Coordination compounds contain a central metal atom/ion surrounded by ligands. They’re important in biological systems and catalysis.
Overview
graph TD
A[Coordination Compounds] --> B[Werner's Theory]
A --> C[Nomenclature]
A --> D[Isomerism]
A --> E[Bonding]
E --> E1[VBT]
E --> E2[CFT]Basic Terms
| Term | Definition |
|---|---|
| Coordination entity | Central metal + ligands |
| Central atom/ion | Metal to which ligands are attached |
| Ligand | Molecule/ion that donates electron pair |
| Coordination number | Number of ligand donor atoms |
| Coordination sphere | Metal + ligands in square brackets |
Werner’s Theory
- Metals show two types of valency: primary and secondary
- Primary valency (ionizable): Satisfied by anions
- Secondary valency (non-ionizable): Satisfied by ligands
- Secondary valency = Coordination number
- Ligands are arranged in definite geometry
Ligands
Classification by Denticity
| Denticity | Type | Examples |
|---|---|---|
| 1 | Monodentate | Cl⁻, NH₃, H₂O, CN⁻, CO |
| 2 | Bidentate | en (ethylenediamine), ox²⁻ (oxalate), bpy |
| 3 | Tridentate | dien, terpyridine |
| 4 | Tetradentate | porphyrin |
| 6 | Hexadentate | EDTA |
Ambidentate Ligands
Can coordinate through different atoms:
- NO₂⁻: Through N (nitro) or O (nitrito)
- SCN⁻: Through S (thiocyanato) or N (isothiocyanato)
Chelates
Complexes with polydentate ligands forming ring structures.
IUPAC Nomenclature
Order of Naming
- Cation before anion
- Within coordination sphere:
- Ligands alphabetically (before metal)
- Metal name with oxidation state
Ligand Names
| Ligand | Name | Ligand | Name |
|---|---|---|---|
| Cl⁻ | chlorido | CN⁻ | cyanido |
| OH⁻ | hydroxido | NH₃ | ammine |
| H₂O | aqua | CO | carbonyl |
| NO | nitrosyl | NO₂⁻ | nitrito-N/O |
Prefixes for Number
di-, tri-, tetra-, penta-, hexa- (bis-, tris-, tetrakis- for complex ligands)
Examples
- [Co(NH₃)₆]Cl₃: Hexaamminecobalt(III) chloride
- K₄[Fe(CN)₆]: Potassium hexacyanidoferrate(II)
Isomerism
Structural Isomerism
graph TD
A[Structural Isomerism] --> B[Ionization]
A --> C[Hydrate/Solvate]
A --> D[Linkage]
A --> E[Coordination]Ionization: Different ions in/outside sphere
- [Co(NH₃)₅Br]SO₄ vs [Co(NH₃)₅SO₄]Br
Hydrate: Water in/outside sphere
- [Cr(H₂O)₆]Cl₃ vs [Cr(H₂O)₅Cl]Cl₂·H₂O
Linkage: Ambidentate ligand coordination
- [Co(NH₃)₅NO₂]²⁺ vs [Co(NH₃)₅ONO]²⁺
Coordination: Ligand exchange between cation and anion
- [Co(NH₃)₆][Cr(CN)₆] vs [Cr(NH₃)₆][Co(CN)₆]
Stereoisomerism
- Geometrical (cis-trans): Same formula, different spatial arrangement
For square planar [MA₂B₂]:
- cis: Same ligands on same side
- trans: Same ligands on opposite sides
For octahedral [MA₂B₄]:
- cis: A’s adjacent
- trans: A’s opposite
- Optical: Non-superimposable mirror images (enantiomers)
Required: Absence of plane of symmetry
Bonding in Coordination Compounds
Valence Bond Theory (VBT)
- Ligands donate electron pairs to empty metal orbitals
- Hybridization determines geometry:
| CN | Hybridization | Geometry |
|---|---|---|
| 4 | sp³ | Tetrahedral |
| 4 | dsp² | Square planar |
| 6 | sp³d² | Octahedral |
| 6 | d²sp³ | Octahedral (inner) |
Crystal Field Theory (CFT)
Ligands are point charges/dipoles creating an electrostatic field.
In octahedral field:
- d orbitals split into t₂g (lower) and eg (higher)
- Crystal field splitting energy = Δ₀
Spectrochemical series:
$$I^- < Br^- < Cl^- < F^- < OH^- < H_2O < NH_3 < en < NO_2^- < CN^- < CO$$Weak field ←→ Strong field
High Spin vs Low Spin
| High Spin | Low Spin | |
|---|---|---|
| Δ₀ | Small (weak field) | Large (strong field) |
| Pairing | Electrons avoid pairing | Electrons pair before filling eg |
| Unpaired e⁻ | More | Less |
| Magnetic | Paramagnetic | Less paramagnetic/Diamagnetic |
Magnetic Properties
$$\mu = \sqrt{n(n+2)} \text{ BM}$$where n = number of unpaired electrons
Applications
- Qualitative analysis: Characteristic colors
- Extraction of metals: Cyanide complex in gold extraction
- Biological systems: Hemoglobin, Chlorophyll, Vitamin B₁₂
- Medicine: Cisplatin (anticancer)
- Photography: Silver bromide complexes
Practice Problems
Write IUPAC names for:
- [Cr(NH₃)₄Cl₂]⁺
- [Pt(en)₂Cl₂]²⁺
Predict the geometry and magnetic nature of [Ni(CN)₄]²⁻ and [NiCl₄]²⁻.
How many geometrical isomers are possible for [Co(NH₃)₃Cl₃]?
Calculate the magnetic moment of [Fe(H₂O)₆]²⁺.