Coordination Compounds

Master Werner's theory, IUPAC nomenclature, isomerism, bonding theories, and applications for JEE Chemistry.

Coordination compounds contain a central metal atom/ion surrounded by ligands. They’re important in biological systems and catalysis.

Overview

graph TD
    A[Coordination Compounds] --> B[Werner's Theory]
    A --> C[Nomenclature]
    A --> D[Isomerism]
    A --> E[Bonding]
    E --> E1[VBT]
    E --> E2[CFT]

Basic Terms

TermDefinition
Coordination entityCentral metal + ligands
Central atom/ionMetal to which ligands are attached
LigandMolecule/ion that donates electron pair
Coordination numberNumber of ligand donor atoms
Coordination sphereMetal + ligands in square brackets

Werner’s Theory

  1. Metals show two types of valency: primary and secondary
  2. Primary valency (ionizable): Satisfied by anions
  3. Secondary valency (non-ionizable): Satisfied by ligands
  4. Secondary valency = Coordination number
  5. Ligands are arranged in definite geometry

Ligands

Classification by Denticity

DenticityTypeExamples
1MonodentateCl⁻, NH₃, H₂O, CN⁻, CO
2Bidentateen (ethylenediamine), ox²⁻ (oxalate), bpy
3Tridentatedien, terpyridine
4Tetradentateporphyrin
6HexadentateEDTA

Ambidentate Ligands

Can coordinate through different atoms:

  • NO₂⁻: Through N (nitro) or O (nitrito)
  • SCN⁻: Through S (thiocyanato) or N (isothiocyanato)

Chelates

Complexes with polydentate ligands forming ring structures.

JEE Tip
Chelates are more stable than analogous complexes with monodentate ligands (chelate effect) due to entropy increase.

IUPAC Nomenclature

Order of Naming

  1. Cation before anion
  2. Within coordination sphere:
    • Ligands alphabetically (before metal)
    • Metal name with oxidation state

Ligand Names

LigandNameLigandName
Cl⁻chloridoCN⁻cyanido
OH⁻hydroxidoNH₃ammine
H₂OaquaCOcarbonyl
NOnitrosylNO₂⁻nitrito-N/O

Prefixes for Number

di-, tri-, tetra-, penta-, hexa- (bis-, tris-, tetrakis- for complex ligands)

Examples

  • [Co(NH₃)₆]Cl₃: Hexaamminecobalt(III) chloride
  • K₄[Fe(CN)₆]: Potassium hexacyanidoferrate(II)

Isomerism

Structural Isomerism

graph TD
    A[Structural Isomerism] --> B[Ionization]
    A --> C[Hydrate/Solvate]
    A --> D[Linkage]
    A --> E[Coordination]
  1. Ionization: Different ions in/outside sphere

    • [Co(NH₃)₅Br]SO₄ vs [Co(NH₃)₅SO₄]Br
  2. Hydrate: Water in/outside sphere

    • [Cr(H₂O)₆]Cl₃ vs [Cr(H₂O)₅Cl]Cl₂·H₂O
  3. Linkage: Ambidentate ligand coordination

    • [Co(NH₃)₅NO₂]²⁺ vs [Co(NH₃)₅ONO]²⁺
  4. Coordination: Ligand exchange between cation and anion

    • [Co(NH₃)₆][Cr(CN)₆] vs [Cr(NH₃)₆][Co(CN)₆]

Stereoisomerism

  1. Geometrical (cis-trans): Same formula, different spatial arrangement

For square planar [MA₂B₂]:

  • cis: Same ligands on same side
  • trans: Same ligands on opposite sides

For octahedral [MA₂B₄]:

  • cis: A’s adjacent
  • trans: A’s opposite
  1. Optical: Non-superimposable mirror images (enantiomers)

Required: Absence of plane of symmetry

Bonding in Coordination Compounds

Valence Bond Theory (VBT)

  • Ligands donate electron pairs to empty metal orbitals
  • Hybridization determines geometry:
CNHybridizationGeometry
4sp³Tetrahedral
4dsp²Square planar
6sp³d²Octahedral
6d²sp³Octahedral (inner)

Crystal Field Theory (CFT)

Ligands are point charges/dipoles creating an electrostatic field.

In octahedral field:

  • d orbitals split into t₂g (lower) and eg (higher)
  • Crystal field splitting energy = Δ₀

Spectrochemical series:

$$I^- < Br^- < Cl^- < F^- < OH^- < H_2O < NH_3 < en < NO_2^- < CN^- < CO$$

Weak field ←→ Strong field

High Spin vs Low Spin

High SpinLow Spin
Δ₀Small (weak field)Large (strong field)
PairingElectrons avoid pairingElectrons pair before filling eg
Unpaired e⁻MoreLess
MagneticParamagneticLess paramagnetic/Diamagnetic
Common Mistake
CFT doesn’t explain why certain complexes are colored. It’s the d-d transitions (t₂g → eg) that cause color, requiring incomplete d orbitals.

Magnetic Properties

$$\mu = \sqrt{n(n+2)} \text{ BM}$$

where n = number of unpaired electrons

Applications

  1. Qualitative analysis: Characteristic colors
  2. Extraction of metals: Cyanide complex in gold extraction
  3. Biological systems: Hemoglobin, Chlorophyll, Vitamin B₁₂
  4. Medicine: Cisplatin (anticancer)
  5. Photography: Silver bromide complexes

Practice Problems

  1. Write IUPAC names for:

    • [Cr(NH₃)₄Cl₂]⁺
    • [Pt(en)₂Cl₂]²⁺
  2. Predict the geometry and magnetic nature of [Ni(CN)₄]²⁻ and [NiCl₄]²⁻.

  3. How many geometrical isomers are possible for [Co(NH₃)₃Cl₃]?

  4. Calculate the magnetic moment of [Fe(H₂O)₆]²⁺.

Quick Check
Why is [Co(NH₃)₆]³⁺ diamagnetic while [CoF₆]³⁻ is paramagnetic?

Further Reading