Hydrocarbons

Master alkanes, alkenes, alkynes, and aromatic hydrocarbons including their reactions and mechanisms for JEE Chemistry.

Hydrocarbons contain only carbon and hydrogen. They form the backbone of organic chemistry.

Overview

graph TD
    A[Hydrocarbons] --> B[Aliphatic]
    A --> C[Aromatic]
    B --> B1[Alkanes - CnH2n+2]
    B --> B2[Alkenes - CnH2n]
    B --> B3[Alkynes - CnH2n-2]
    C --> C1[Benzene]
    C --> C2[Substituted Benzene]

Alkanes

General Formula

$$C_nH_{2n+2}$$

Nomenclature

  • Root word based on number of carbons + “-ane”
  • Branch: position-name (e.g., 2-methylbutane)

Conformations of Ethane

graph LR
    A[Staggered] -->|"Most stable
0 kJ/mol"| B[Energy] C[Eclipsed] -->|"Least stable
12.5 kJ/mol"| B

Newman Projections:

  • Staggered: dihedral angle 60°
  • Eclipsed: dihedral angle 0°

Preparation

  1. From unsaturated hydrocarbons:

    $$\text{Alkene/Alkyne} + H_2 \xrightarrow{Ni/Pd/Pt} \text{Alkane}$$
  2. Wurtz Reaction:

    $$2RX + 2Na \xrightarrow{\text{dry ether}} R-R + 2NaX$$
  3. Kolbe’s Electrolysis:

    $$2RCOO^- \xrightarrow{\text{electrolysis}} R-R + 2CO_2 + 2e^-$$
  4. Decarboxylation:

    $$RCOONa + NaOH \xrightarrow{CaO, \Delta} R-H + Na_2CO_3$$

Halogenation Mechanism (Free Radical)

$$CH_4 + Cl_2 \xrightarrow{UV} CH_3Cl + HCl$$

Steps:

  1. Initiation: $Cl_2 \xrightarrow{h\nu} 2Cl\cdot$
  2. Propagation: $CH_4 + Cl\cdot \rightarrow CH_3\cdot + HCl$, then $CH_3\cdot + Cl_2 \rightarrow CH_3Cl + Cl\cdot$
  3. Termination: Radical recombination

Reactivity: 3° H > 2° H > 1° H (stability of radicals)

JEE Tip
Order of reactivity in halogenation: F₂ > Cl₂ > Br₂ > I₂. Fluorination is explosive, iodination is reversible.

Alkenes

General Formula

$$C_nH_{2n}$$

Geometrical Isomerism

Requires:

  1. Restricted rotation (C=C)
  2. Different groups on each sp² carbon

cis: Same groups on same side trans: Same groups on opposite sides

Preparation

  1. Dehydration of alcohols:

    $$R-CH_2-CH_2OH \xrightarrow{H_2SO_4, \Delta} R-CH=CH_2 + H_2O$$

    (Saytzeff’s rule: More substituted alkene preferred)

  2. Dehydrohalogenation:

    $$R-CH_2-CH_2X \xrightarrow{\text{alc. KOH}} R-CH=CH_2 + HX$$
  3. Dehalogenation:

    $$R-CHX-CHX-R' \xrightarrow{Zn} R-CH=CH-R' + ZnX_2$$

Electrophilic Addition Mechanism

Example: HBr addition

  1. π electrons attack H⁺ → carbocation forms
  2. Br⁻ attacks carbocation → product

Markovnikov’s Rule: In addition of HX to unsymmetrical alkene, H goes to carbon with more H atoms.

$$CH_3CH=CH_2 + HBr \rightarrow CH_3CHBr-CH_3$$

Anti-Markovnikov (Peroxide Effect)

With peroxides (HBr only):

$$CH_3CH=CH_2 + HBr \xrightarrow{R_2O_2} CH_3CH_2CH_2Br$$

Important Reactions

ReactionReagentProduct
HydrogenationH₂/NiAlkane
HalogenationX₂Vicinal dihalide
HX additionHXHaloalkane
HydrationH₂O/H⁺Alcohol
OzonolysisO₃, Zn/H₂OAldehydes/Ketones

Ozonolysis

$$\text{Alkene} \xrightarrow{O_3} \text{Ozonide} \xrightarrow{Zn/H_2O} \text{Carbonyl compounds}$$

Used to locate C=C position.

Alkynes

General Formula

$$C_nH_{2n-2}$$

Preparation

  1. From vicinal dihalides:

    $$R-CHX-CHX-R' \xrightarrow{\text{alc. KOH, }\Delta} R-C\equiv C-R'$$
  2. From calcium carbide:

    $$CaC_2 + 2H_2O \rightarrow HC\equiv CH + Ca(OH)_2$$

Acidic Nature

Terminal alkynes are weakly acidic (sp hybridization, 50% s-character).

$$HC\equiv CH + Na \rightarrow HC\equiv C^-Na^+ + \frac{1}{2}H_2$$

Acidity order: Alkynes > Alkenes > Alkanes

Important Reactions

ReactionReagentProduct
Complete hydrogenationH₂/Ni (excess)Alkane
Partial hydrogenationH₂/Lindlar’s catalystcis-Alkene
Partial hydrogenationNa/liq. NH₃trans-Alkene
Addition of HX (one mole)HXVinyl halide
HydrationH₂O/H₂SO₄/HgSO₄Carbonyl compound
JEE Tip
Lindlar’s catalyst (Pd-CaCO₃/quinoline) gives cis addition, while Na/liquid NH₃ gives trans addition.

Aromatic Hydrocarbons (Benzene)

Structure

  • 6 carbon, 6 hydrogen, planar hexagonal
  • All C-C bonds equal (1.39 Å)
  • Delocalized π electrons (resonance)

Aromaticity (Hückel’s Rule)

A compound is aromatic if:

  1. Cyclic
  2. Planar
  3. Completely conjugated
  4. (4n + 2) π electrons (n = 0, 1, 2, …)

Electrophilic Aromatic Substitution

General Mechanism:

  1. Generation of electrophile
  2. Attack on benzene ring (arenium ion formed)
  3. Loss of H⁺ (aromaticity restored)

Important Reactions

ReactionReagentProduct
HalogenationX₂/FeX₃Halobenzene
NitrationHNO₃/H₂SO₄Nitrobenzene
SulphonationH₂SO₄ (fuming)Benzenesulphonic acid
Friedel-Crafts AlkylationRX/AlCl₃Alkylbenzene
Friedel-Crafts AcylationRCOCl/AlCl₃Ketone

Directing Effects

ortho-para Directors (Activating - except halogens): $-OH, -NH_2, -OR, -NHCOR, -R, -X$ (halogens)

meta Directors (Deactivating): $-NO_2, -CN, -CHO, -COR, -COOH, -SO_3H$

Common Mistake
Halogens are ortho-para directing but deactivating due to opposing inductive (-I) and resonance (+R) effects.

Practice Problems

  1. Give the mechanism of chlorination of methane.

  2. Predict the product: $CH_3CH=CHCH_3 + HBr \rightarrow ?$

  3. What happens when propyne is treated with dilute H₂SO₄ in presence of HgSO₄?

  4. Arrange in order of reactivity towards electrophilic substitution: Benzene, Toluene, Nitrobenzene, Phenol.

Quick Check
Why doesn’t benzene undergo addition reactions easily despite having π electrons?

Further Reading