Hydrocarbons contain only carbon and hydrogen. They form the backbone of organic chemistry.
Overview
graph TD
A[Hydrocarbons] --> B[Aliphatic]
A --> C[Aromatic]
B --> B1[Alkanes - CnH2n+2]
B --> B2[Alkenes - CnH2n]
B --> B3[Alkynes - CnH2n-2]
C --> C1[Benzene]
C --> C2[Substituted Benzene]Alkanes
General Formula
$$C_nH_{2n+2}$$Nomenclature
- Root word based on number of carbons + “-ane”
- Branch: position-name (e.g., 2-methylbutane)
Conformations of Ethane
graph LR
A[Staggered] -->|"Most stable
0 kJ/mol"| B[Energy]
C[Eclipsed] -->|"Least stable
12.5 kJ/mol"| BNewman Projections:
- Staggered: dihedral angle 60°
- Eclipsed: dihedral angle 0°
Preparation
From unsaturated hydrocarbons:
$$\text{Alkene/Alkyne} + H_2 \xrightarrow{Ni/Pd/Pt} \text{Alkane}$$Wurtz Reaction:
$$2RX + 2Na \xrightarrow{\text{dry ether}} R-R + 2NaX$$Kolbe’s Electrolysis:
$$2RCOO^- \xrightarrow{\text{electrolysis}} R-R + 2CO_2 + 2e^-$$Decarboxylation:
$$RCOONa + NaOH \xrightarrow{CaO, \Delta} R-H + Na_2CO_3$$
Halogenation Mechanism (Free Radical)
$$CH_4 + Cl_2 \xrightarrow{UV} CH_3Cl + HCl$$Steps:
- Initiation: $Cl_2 \xrightarrow{h\nu} 2Cl\cdot$
- Propagation: $CH_4 + Cl\cdot \rightarrow CH_3\cdot + HCl$, then $CH_3\cdot + Cl_2 \rightarrow CH_3Cl + Cl\cdot$
- Termination: Radical recombination
Reactivity: 3° H > 2° H > 1° H (stability of radicals)
Alkenes
General Formula
$$C_nH_{2n}$$Geometrical Isomerism
Requires:
- Restricted rotation (C=C)
- Different groups on each sp² carbon
cis: Same groups on same side trans: Same groups on opposite sides
Preparation
Dehydration of alcohols:
$$R-CH_2-CH_2OH \xrightarrow{H_2SO_4, \Delta} R-CH=CH_2 + H_2O$$(Saytzeff’s rule: More substituted alkene preferred)
Dehydrohalogenation:
$$R-CH_2-CH_2X \xrightarrow{\text{alc. KOH}} R-CH=CH_2 + HX$$Dehalogenation:
$$R-CHX-CHX-R' \xrightarrow{Zn} R-CH=CH-R' + ZnX_2$$
Electrophilic Addition Mechanism
Example: HBr addition
- π electrons attack H⁺ → carbocation forms
- Br⁻ attacks carbocation → product
Markovnikov’s Rule: In addition of HX to unsymmetrical alkene, H goes to carbon with more H atoms.
$$CH_3CH=CH_2 + HBr \rightarrow CH_3CHBr-CH_3$$Anti-Markovnikov (Peroxide Effect)
With peroxides (HBr only):
$$CH_3CH=CH_2 + HBr \xrightarrow{R_2O_2} CH_3CH_2CH_2Br$$Important Reactions
| Reaction | Reagent | Product |
|---|---|---|
| Hydrogenation | H₂/Ni | Alkane |
| Halogenation | X₂ | Vicinal dihalide |
| HX addition | HX | Haloalkane |
| Hydration | H₂O/H⁺ | Alcohol |
| Ozonolysis | O₃, Zn/H₂O | Aldehydes/Ketones |
Ozonolysis
$$\text{Alkene} \xrightarrow{O_3} \text{Ozonide} \xrightarrow{Zn/H_2O} \text{Carbonyl compounds}$$Used to locate C=C position.
Alkynes
General Formula
$$C_nH_{2n-2}$$Preparation
From vicinal dihalides:
$$R-CHX-CHX-R' \xrightarrow{\text{alc. KOH, }\Delta} R-C\equiv C-R'$$From calcium carbide:
$$CaC_2 + 2H_2O \rightarrow HC\equiv CH + Ca(OH)_2$$
Acidic Nature
Terminal alkynes are weakly acidic (sp hybridization, 50% s-character).
$$HC\equiv CH + Na \rightarrow HC\equiv C^-Na^+ + \frac{1}{2}H_2$$Acidity order: Alkynes > Alkenes > Alkanes
Important Reactions
| Reaction | Reagent | Product |
|---|---|---|
| Complete hydrogenation | H₂/Ni (excess) | Alkane |
| Partial hydrogenation | H₂/Lindlar’s catalyst | cis-Alkene |
| Partial hydrogenation | Na/liq. NH₃ | trans-Alkene |
| Addition of HX (one mole) | HX | Vinyl halide |
| Hydration | H₂O/H₂SO₄/HgSO₄ | Carbonyl compound |
Aromatic Hydrocarbons (Benzene)
Structure
- 6 carbon, 6 hydrogen, planar hexagonal
- All C-C bonds equal (1.39 Å)
- Delocalized π electrons (resonance)
Aromaticity (Hückel’s Rule)
A compound is aromatic if:
- Cyclic
- Planar
- Completely conjugated
- (4n + 2) π electrons (n = 0, 1, 2, …)
Electrophilic Aromatic Substitution
General Mechanism:
- Generation of electrophile
- Attack on benzene ring (arenium ion formed)
- Loss of H⁺ (aromaticity restored)
Important Reactions
| Reaction | Reagent | Product |
|---|---|---|
| Halogenation | X₂/FeX₃ | Halobenzene |
| Nitration | HNO₃/H₂SO₄ | Nitrobenzene |
| Sulphonation | H₂SO₄ (fuming) | Benzenesulphonic acid |
| Friedel-Crafts Alkylation | RX/AlCl₃ | Alkylbenzene |
| Friedel-Crafts Acylation | RCOCl/AlCl₃ | Ketone |
Directing Effects
ortho-para Directors (Activating - except halogens): $-OH, -NH_2, -OR, -NHCOR, -R, -X$ (halogens)
meta Directors (Deactivating): $-NO_2, -CN, -CHO, -COR, -COOH, -SO_3H$
Practice Problems
Give the mechanism of chlorination of methane.
Predict the product: $CH_3CH=CHCH_3 + HBr \rightarrow ?$
What happens when propyne is treated with dilute H₂SO₄ in presence of HgSO₄?
Arrange in order of reactivity towards electrophilic substitution: Benzene, Toluene, Nitrobenzene, Phenol.