Alkynes: Triple Bond Chemistry

Master alkynes - preparation methods, acidic character, electrophilic and nucleophilic addition reactions for JEE

The Hook: The Flame That Cuts Steel

Connect: Real Life → Chemistry

Ever seen welders cutting through thick steel beams with an incredibly hot flame? That’s an oxyacetylene torch - burning acetylene (C₂H₂) with oxygen produces a flame reaching 3,300°C!

But here’s what makes acetylene special in chemistry: it’s the only hydrocarbon that can act as an acid. How can a hydrocarbon give up a proton? The answer lies in the triple bond!

JEE Question: Why can ethyne (acetylene) react with sodium metal while ethene and ethane cannot?


The Core Concept

What are Alkynes?

Alkynes are unsaturated hydrocarbons containing at least one carbon-carbon triple bond (C≡C).

$$\boxed{\text{General formula: C}_n\text{H}_{2n-2}}$$

In simple terms: The triple bond has one σ bond and two π bonds, making alkynes even more unsaturated than alkenes!

The Triple Bond: σ + π + π

A C≡C triple bond consists of:

  1. One σ (sigma) bond - sp-sp overlap (strong)
  2. Two π (pi) bonds - p-p overlap (weaker)

Hybridization: sp (50% s-character, 50% p-character)

Bond characteristics:

  • Bond length: C≡C (120 pm) < C=C (134 pm) < C-C (154 pm)
  • Bond energy: C≡C (839 kJ/mol) > C=C (611 kJ/mol) > C-C (347 kJ/mol)
  • Bond strength: Triple > Double > Single
Why Terminal Alkynes are Acidic

Key concept for JEE Advanced:

The sp hybridized carbon has 50% s-character (compared to 33% in sp² and 25% in sp³)

Higher s-character → Electrons held closer to nucleus → More electronegative C → Can stabilize negative charge better

$$\boxed{\text{R-C≡C-H} + \text{NaNH}_2 \rightarrow \text{R-C≡C}^- \text{Na}^+ + \text{NH}_3}$$

This makes terminal alkynes weakly acidic (pKa ≈ 25)

Related: Acid-Base Chemistry

JEE Weightage

Alkynes: 2-3 questions in JEE Main, 1-2 in JEE Advanced High-yield topics:

  • Acidic nature of terminal alkynes
  • Addition reactions (electrophilic and nucleophilic)
  • Polymerization and industrial applications

Preparation of Alkynes

Method 1: From Calcium Carbide (Industrial)

Historical importance - commercial production of acetylene

$$\boxed{\text{CaC}_2 + 2\text{H}_2\text{O} \rightarrow \text{HC≡CH} + \text{Ca(OH)}_2}$$

Calcium carbide preparation:

$$\text{CaO} + 3\text{C} \xrightarrow{2000°\text{C}} \text{CaC}_2 + \text{CO}$$

Uses of acetylene:

  • Oxyacetylene welding (3,300°C flame)
  • Starting material for many organic syntheses
  • Production of PVC (via vinyl chloride)

Method 2: Dehydrohalogenation of Vicinal or Geminal Dihalides

From Vicinal Dihalides (X on adjacent carbons)

$$\boxed{\text{R-CHX-CHX-R} + 2\text{KOH (alc.)} \xrightarrow{\Delta} \text{R-C≡C-R} + 2\text{KX} + 2\text{H}_2\text{O}}$$

Mechanism: Two successive eliminations

Step 1: First elimination → alkene

$$\text{R-CHBr-CHBr-R} + \text{KOH} \rightarrow \text{R-CH=CHBr-R}$$

Step 2: Second elimination → alkyne

$$\text{R-CH=CHBr-R} + \text{KOH} \rightarrow \text{R-C≡C-R}$$

From Geminal Dihalides (both X on same carbon)

$$\boxed{\text{R-CHX}_2\text{-CH}_3 + 2\text{KOH (alc.)} \xrightarrow{\Delta} \text{R-C≡CH} + 2\text{KX} + 2\text{H}_2\text{O}}$$

Example:

$$\text{CH}_3\text{-CHBr}_2 + 2\text{KOH (alc.)} \rightarrow \text{CH}_3\text{-C≡CH}$$
Memory Trick: Vicinal vs Geminal

“Vicinity is Next door, Gemini is Twin”

  • Vicinal: Halogens on adjacent carbons (neighbors)

    • CHBr-CHBr (1,2-dibromo)
  • Geminal: Halogens on same carbon (twins on same spot)

    • CHBr₂ (1,1-dibromo)

JEE Tip: Both give alkynes with excess KOH, but geminal dihalides are preferred (easier to prepare from aldehydes/ketones)

Related: Alkyl Halides

Method 3: Alkylation of Terminal Alkynes

Building longer carbon chains using sodium acetylide

$$\boxed{\text{HC≡C}^- \text{Na}^+ + \text{R-X} \rightarrow \text{R-C≡CH} + \text{NaX}}$$

Full sequence:

Step 1: Form acetylide ion

$$\text{HC≡CH} + \text{NaNH}_2 \rightarrow \text{HC≡C}^- \text{Na}^+ + \text{NH}_3$$

Step 2: Nucleophilic substitution

$$\text{HC≡C}^- + \text{CH}_3\text{Br} \rightarrow \text{CH}_3\text{-C≡CH}$$

Step 3: Can repeat for longer chain

$$\text{CH}_3\text{-C≡CH} + \text{NaNH}_2 \rightarrow \text{CH}_3\text{-C≡C}^- \text{Na}^+$$ $$\text{CH}_3\text{-C≡C}^- + \text{CH}_3\text{CH}_2\text{Br} \rightarrow \text{CH}_3\text{-C≡C-CH}_2\text{CH}_3$$
JEE Trap: Nucleophile Strength

Question: Why use NaNH₂ and not NaOH to form acetylide?

Wrong answer: “Both are bases, so both work”

Correct answer:

pKa comparison:

  • HC≡CH: pKa ≈ 25
  • NH₃: pKa ≈ 35
  • H₂O: pKa ≈ 15.7

For complete deprotonation: Conjugate acid of base must have higher pKa than substrate

$$\text{pKa (NH}_3\text{) = 35} > \text{pKa (HC≡CH) = 25} \quad ✓$$ $$\text{pKa (H}_2\text{O) = 15.7} < \text{pKa (HC≡CH) = 25} \quad ✗$$

Conclusion: NaNH₂ is strong enough, NaOH is too weak!

JEE One-liner: “For acetylide formation, Need NaNH₂ (Not NaOH)”


Acidic Character of Alkynes

Why Terminal Alkynes are Acidic

Acidity order:

$$\boxed{\text{HC≡CH} > \text{H}_2\text{C=CH}_2 > \text{H}_3\text{C-CH}_3}$$

pKa values:

  • Ethyne (HC≡CH): 25
  • Ethene (H₂C=CH₂): 44
  • Ethane (H₃C-CH₃): 50

Reason: Stability of carbanion

When H⁺ is removed:

$$\text{R-C≡C-H} \rightarrow \text{R-C≡C}^- + \text{H}^+$$

The acetylide ion (R-C≡C⁻) is stabilized by:

  1. High s-character (50% in sp) → electrons closer to nucleus
  2. sp hybridized carbon is more electronegative → holds negative charge better

Electronegativity:

$$\text{sp (50\% s)} > \text{sp}^2\text{ (33\% s)} > \text{sp}^3\text{ (25\% s)}$$

More s-character → More electronegative → Better stabilization of (-)ve charge

JEE Classic Comparison

Q: Arrange in order of increasing acidity: (a) CH₃-CH₃ (b) CH₂=CH₂ (c) HC≡CH

Answer: (a) < (b) < (c)

Explanation:

CompoundHybridizations-characterpKaAcidity
Ethanesp³25%50Least acidic
Ethenesp²33%44Weak acid
Ethynesp50%25Strongest (of these)

JEE Shortcut: More s-character → More acidic

Reactions Showing Acidic Nature

Reaction 1: With Sodium metal

$$\boxed{2\text{HC≡CH} + 2\text{Na} \rightarrow 2\text{HC≡C}^- \text{Na}^+ + \text{H}_2↑}$$

Reaction 2: With NaNH₂ (stronger base, more common)

$$\boxed{\text{HC≡CH} + \text{NaNH}_2 \rightarrow \text{HC≡C}^- \text{Na}^+ + \text{NH}_3}$$

Reaction 3: With Grignard reagent

$$\boxed{\text{HC≡CH} + \text{CH}_3\text{MgBr} \rightarrow \text{HC≡C}^- \text{Mg}^{2+}\text{Br}^- + \text{CH}_4}$$

Test for terminal alkynes:

With ammoniacal AgNO₃ or ammoniacal Cu₂Cl₂:

$$\boxed{\text{R-C≡CH} + \text{AgNO}_3 + \text{NH}_3 \rightarrow \text{R-C≡C-Ag}↓ + \text{NH}_4\text{NO}_3}$$

White/yellow precipitate forms (silver acetylide)

Similarly with copper:

$$\text{R-C≡CH} + \text{Cu}_2\text{Cl}_2 + \text{NH}_3 \rightarrow \text{R-C≡C-Cu}↓$$

Red/brown precipitate (copper acetylide)

Safety Note

Metal acetylides (Ag-C≡C-R, Cu-C≡C-R) are explosive when dry!

Handle with care in laboratory.

JEE won’t ask about explosions, but will test:

  • Which alkynes give this test? (Only terminal alkynes)
  • Internal alkynes (R-C≡C-R) → No precipitate

Reactions of Alkynes

Type 1: Addition Reactions

Alkynes can add two molecules of reagent (two π bonds to break!)

Reaction 1: Hydrogenation

Complete Hydrogenation (excess H₂)

$$\boxed{\text{R-C≡C-R} + 2\text{H}_2 \xrightarrow{\text{Pt/Pd/Ni}} \text{R-CH}_2\text{-CH}_2\text{-R}}$$

Triple bond → Single bond (alkane)

Partial Hydrogenation to Alkene

Method A: Lindlar’s Catalyst (gives cis-alkene)

$$\boxed{\text{R-C≡C-R} + \text{H}_2 \xrightarrow{\text{Pd/BaSO}_4\text{, quinoline}} \text{R-CH=CH-R (cis)}}$$
  • Syn addition (both H from same side)
  • Catalyst is “poisoned” with quinoline to prevent over-reduction

Method B: Na in liquid NH₃ (gives trans-alkene)

$$\boxed{\text{R-C≡C-R} + 2\text{Na/liq. NH}_3 \rightarrow \text{R-CH=CH-R (trans)}}$$
  • Anti addition (H from opposite sides)
Memory Trick: cis vs trans

“Lindlar is Like cis, Liquid gives trans”

  • Lindlar → Like → close together → cis
  • Liquid NH₃ → Long way apart → trans

JEE loves asking: “How will you prepare cis-2-butene from 2-butyne?” Answer: Lindlar’s catalyst!

Related: Alkenes

Reaction 2: Addition of Halogens

With one mole X₂ → Dihaloalkene

$$\boxed{\text{R-C≡C-R} + \text{X}_2 \rightarrow \text{R-CX=CX-R}}$$

With excess X₂ → Tetrahaloalkane

$$\boxed{\text{R-C≡C-R} + 2\text{X}_2 \rightarrow \text{R-CX}_2\text{-CX}_2\text{-R}}$$

Example:

$$\text{HC≡CH} + \text{Br}_2 \rightarrow \text{HCBr=CHBr}$$ $$\text{HCBr=CHBr} + \text{Br}_2 \rightarrow \text{HCBr}_2\text{-CHBr}_2$$

Test for unsaturation: Br₂/CCl₄ decolorized (same as alkenes)

Reaction 3: Addition of Hydrogen Halides (HX)

Follows Markovnikov’s Rule

With one mole HX:

$$\boxed{\text{R-C≡CH} + \text{HX} \rightarrow \text{R-CX=CH}_2}$$

Mechanism:

Step 1: Protonation → vinylic carbocation

$$\text{R-C≡CH} + \text{H}^+ \rightarrow \text{R-C}^+\text{=CH}_2$$

(more stable)

Not: R-CH=C⁺H (less stable due to sp carbon bearing +ve charge)

Step 2: X⁻ attacks

$$\text{R-C}^+\text{=CH}_2 + \text{X}^- \rightarrow \text{R-CX=CH}_2$$

With excess HX: (adds to alkene product)

$$\boxed{\text{R-CX=CH}_2 + \text{HX} \rightarrow \text{R-CX}_2\text{-CH}_3}$$

Overall:

$$\text{R-C≡CH} \xrightarrow{2\text{HX}} \text{R-CX}_2\text{-CH}_3$$
JEE Trap: Geminal vs Vicinal Dihalides

Question type: “What is the product when propyne reacts with excess HBr?”

Common mistake: Writing CH₃-CHBr-CHBr₂ (vicinal)

Correct answer: CH₃-CBr₂-CH₃ (geminal)

Why?

  • First addition: CH₃-C≡CH + HBr → CH₃-C(Br)=CH₂ (Markovnikov)
  • Second addition: CH₃-C(Br)=CH₂ + HBr → CH₃-CBr₂-CH₃ (Markovnikov again!)

Both halogens end up on the same carbon → Geminal dihalide

Memory: “Markovnikov Makes geMs” (geminal dihalides)

Reaction 4: Hydration

Using H₂SO₄/HgSO₄ - Gives carbonyl compounds

$$\boxed{\text{R-C≡CH} \xrightarrow{\text{H}_2\text{SO}_4, \text{HgSO}_4} \text{R-CO-CH}_3}$$

Mechanism:

Step 1: Addition of H₂O (Markovnikov)

$$\text{R-C≡CH} \xrightarrow{\text{H}^+, \text{H}_2\text{O}} \text{R-C(OH)=CH}_2$$

(enol form)

Step 2: Keto-enol tautomerism

$$\text{R-C(OH)=CH}_2 \rightarrow \text{R-CO-CH}_3$$

(keto form - stable)

Important: Enols are unstable and spontaneously convert to ketones!

Special case: Acetylene

$$\boxed{\text{HC≡CH} \xrightarrow{\text{H}_2\text{SO}_4, \text{HgSO}_4} \text{CH}_3\text{-CHO}}$$

Gives acetaldehyde (not ketone, since it’s terminal)

Keto-Enol Tautomerism

Enol (unstable) ⇌ Keto (stable)

   OH                O
   |                 ||
R-C=CH₂  ←→  R-C-CH₃

Equilibrium strongly favors keto form (more stable)

Ratio: Keto : Enol ≈ 10⁶ : 1

Why keto is more stable:

  • C=O bond (740 kJ/mol) stronger than C=C bond (611 kJ/mol)
  • C-H bond (413 kJ/mol) stronger than O-H bond (463 kJ/mol)… wait, that’s wrong!

Actually: C=O stronger + C-H bond compensates for loss of O-H and C=C

Net result: Keto form has lower energy

Related: Carbonyl Compounds

Hydroboration-Oxidation (Anti-Markovnikov)

$$\boxed{\text{R-C≡CH} \xrightarrow[\text{2. H}_2\text{O}_2/\text{OH}^-]{\text{1. (sia-BH)}_2} \text{R-CH}_2\text{-CHO}}$$

Gives aldehyde (anti-Markovnikov hydration)

Type 2: Polymerization

Linear Polymerization

Ethyne → Benzene

$$\boxed{3\text{HC≡CH} \xrightarrow{\text{Red hot Fe tube, 873 K}} \text{C}_6\text{H}_6}$$

Mechanism: Cyclic trimerization

HC≡CH  +  HC≡CH  +  HC≡CH  →  Benzene ring

Polymerization to PVC

Step 1: Ethyne → Vinyl chloride

$$\text{HC≡CH} + \text{HCl} \xrightarrow{\text{HgCl}_2, 333\text{ K}} \text{H}_2\text{C=CHCl}$$

Step 2: Polymerization

$$n\text{H}_2\text{C=CHCl} \xrightarrow{\text{peroxide}} (\text{-CH}_2\text{-CHCl-})_n$$

(PVC)

Uses: Pipes, insulation, flooring

Related: Polymers


Distinction: Alkanes vs Alkenes vs Alkynes

TestAlkaneAlkeneAlkyne (Terminal)Alkyne (Internal)
Br₂/CCl₄No reaction (brown color persists)DecolorizesDecolorizesDecolorizes
KMnO₄No reactionDecolorizes (purple → colorless)DecolorizesDecolorizes
Ammoniacal AgNO₃No reactionNo reactionWhite pptNo reaction
NaNH₂No reactionNo reactionForms acetylideNo reaction
JEE Strategy: Identification Tests

Given: Unknown hydrocarbon

Test 1: Br₂/CCl₄

  • Decolorizes → Unsaturated (alkene or alkyne)
  • No change → Saturated (alkane)

Test 2: If unsaturated, add ammoniacal AgNO₃

  • White ppt → Terminal alkyne
  • No ppt → Alkene or internal alkyne

Test 3: If no ppt, check molecular formula

  • CₙH₂ₙ → Alkene
  • CₙH₂ₙ₋₂ → Internal alkyne

JEE loves: Multi-step identification problems!


Common Mistakes to Avoid

Mistake #1: Wrong Hydration Product

Wrong: Hydration of alkynes gives alcohols

Correct: Hydration gives carbonyl compounds (aldehydes/ketones) via enol intermediate

Example:

$$\text{CH}_3\text{-C≡CH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CH}_3\text{-CO-CH}_3 \quad \text{(NOT alcohol!)}$$

The initially formed enol immediately tautomerizes to ketone.

Mistake #2: Forgetting Geminal Addition

Wrong: HC≡CH + 2HBr → CHBr-CHBr₂ (vicinal)

Correct: HC≡CH + 2HBr → CHBr₂-CH₃ (geminal)

Reason: Markovnikov’s rule applies at EACH step

  • Both additions follow Markovnikov
  • Result: Both Br on same carbon
Mistake #3: Internal Alkynes Can't React

Wrong: “Internal alkynes (R-C≡C-R) don’t react with bases”

Correct: They DO react with strong bases for addition reactions, but:

  • Can’t form acetylide ions (no acidic H)
  • Won’t give precipitate with AgNO₃/Cu₂Cl₂
  • Won’t undergo alkylation reactions

JEE distinction: Terminal vs internal alkynes - know which reactions need terminal H!


Practice Problems

Level 1: Foundation (NCERT)

Problem 1: Nomenclature

Q: Write the IUPAC name of CH₃-C≡C-CH₂-CH₃

Solution:

  1. Longest chain with triple bond: 5 carbons
  2. Number from end closest to triple bond
  3. Triple bond between C-2 and C-3

Answer: Pent-2-yne

Structure:

CH₃-C≡C-CH₂-CH₃
1   2 3 4   5

Triple bond starts at C-2, so “pent-2-yne”

Problem 2: Acidity

Q: Why is ethyne more acidic than ethene?

Solution:

Key factor: Stability of conjugate base (carbanion)

When H⁺ is lost:

  • Ethyne → HC≡C⁻ (acetylide ion)
  • Ethene → H₂C=CH⁻ (vinyl anion)

Stability comparison:

HC≡C⁻:

  • Carbon is sp hybridized (50% s-character)
  • Electrons in orbital closer to nucleus
  • More stable

H₂C=CH⁻:

  • Carbon is sp² hybridized (33% s-character)
  • Electrons farther from nucleus
  • Less stable

Rule: More stable conjugate base → Stronger acid

$$\text{pKa (ethyne) = 25 < pKa (ethene) = 44}$$

Answer: Higher s-character in sp carbon stabilizes negative charge better

Level 2: JEE Main

Problem 3: Product Prediction

Q: What is the major product when propyne reacts with HBr (1 mole)?

Solution:

Structure: CH₃-C≡CH

Step 1: Identify possible carbocations

Addition to which carbon?

Option 1: CH₃-C⁺=CH₂  (vinyl carbocation, more substituted)
Option 2: CH₃-CH=C⁺H   (vinyl carbocation, less substituted)

Markovnikov’s rule: More substituted carbocation forms

Step 2: Br⁻ attacks carbocation

CH₃-C⁺=CH₂  +  Br⁻  →  CH₃-C(Br)=CH₂

Answer: CH₃-C(Br)=CH₂ (2-bromopropene)

Common mistake: Don’t write CH₃-CH=CHBr (this violates Markovnikov)

Problem 4: Stereochemistry

Q: How will you prepare cis-2-butene from 2-butyne?

Solution:

Need: CH₃-CH=CH-CH₃ (cis configuration)

Starting: CH₃-C≡C-CH₃

Method: Partial hydrogenation with Lindlar’s catalyst

$$\text{CH}_3\text{-C≡C-CH}_3 + \text{H}_2 \xrightarrow{\text{Pd/BaSO}_4} \text{CH}_3\text{-CH=CH-CH}_3 \text{ (cis)}$$

Why Lindlar?

  • Gives syn addition → cis product
  • Catalyst poisoned to prevent over-reduction

Wrong answer: Na/liq. NH₃ (gives trans, not cis)

JEE Tip: Lindlar = cis, Na/NH₃ = trans (memorize this!)

Level 3: JEE Advanced

Problem 5: Multi-step Synthesis

Q: Starting from acetylene, how will you prepare 2-butanone?

Solution:

Target: CH₃-CO-CH₂-CH₃

Starting: HC≡CH

Strategy: Need 4 carbons and a ketone group

Step 1: Alkylation (add first methyl)

$$\text{HC≡CH} + \text{NaNH}_2 \rightarrow \text{HC≡C}^- \text{Na}^+$$ $$\text{HC≡C}^- + \text{CH}_3\text{Br} \rightarrow \text{CH}_3\text{-C≡CH}$$

Step 2: Second alkylation (add ethyl)

$$\text{CH}_3\text{-C≡CH} + \text{NaNH}_2 \rightarrow \text{CH}_3\text{-C≡C}^- \text{Na}^+$$ $$\text{CH}_3\text{-C≡C}^- + \text{CH}_3\text{CH}_2\text{Br} \rightarrow \text{CH}_3\text{-C≡C-CH}_2\text{CH}_3$$

Step 3: Hydration (convert triple bond to ketone)

$$\text{CH}_3\text{-C≡C-CH}_2\text{CH}_3 \xrightarrow{\text{H}_2\text{SO}_4/\text{HgSO}_4} \text{?}$$

Wait! Which ketone forms?

Internal alkyne hydration:

  • Can give mixture
  • Markovnikov still applies but either direction possible

Actually for symmetric internal alkynes: Only one ketone possible!

$$\text{CH}_3\text{-C≡C-CH}_2\text{CH}_3 \rightarrow \text{CH}_3\text{-CO-CH}_2\text{CH}_3$$

or

$$\text{CH}_3\text{-CH}_2\text{-CO-CH}_3$$

Both are same compound! (2-butanone)

Answer:

  1. HC≡CH + NaNH₂ → HC≡C⁻Na⁺
    • CH₃Br → CH₃-C≡CH
    • NaNH₂ → CH₃-C≡C⁻Na⁺
    • C₂H₅Br → CH₃-C≡C-C₂H₅
  2. H₂SO₄/HgSO₄ → CH₃-CO-C₂H₅

JEE Advanced loves: Multi-step synthesis with alkylation + functional group interconversion!

Problem 6: Mechanism Analysis

Q: Explain why hydration of 1-butyne gives 2-butanone and not butanal.

Solution:

Structure: CH₃-CH₂-C≡CH

Hydration conditions: H₂SO₄/HgSO₄

Mechanism:

Step 1: Electrophilic addition of H₂O (follows Markovnikov)

Possible enols:

Option 1: CH₃-CH₂-C(OH)=CH₂  (more substituted C gets OH)
Option 2: CH₃-CH₂-CH=C(OH)H  (less substituted)

Markovnikov: OH adds to more substituted carbon → Option 1

Step 2: Keto-enol tautomerism

CH₃-CH₂-C(OH)=CH₂  →  CH₃-CH₂-CO-CH₃
(enol)                    (2-butanone)

Why not butanal?

For butanal (CH₃-CH₂-CH₂-CHO), we’d need:

CH₃-CH₂-CH=C(OH)H  →  CH₃-CH₂-CH₂-CHO

But this violates Markovnikov’s rule! (OH on less substituted C)

Answer: Markovnikov’s rule ensures OH adds to internal carbon, giving ketone (2-butanone) not aldehyde.

JEE Insight: For terminal alkynes:

  • If triple bond at end (like ethyne) → aldehyde
  • If triple bond internal (like 1-butyne) → ketone

Actually, 1-butyne IS terminal! Let me reconsider…

Correction:

1-butyne: CH₃-CH₂-C≡CH (terminal)

Hydration:

$$\text{CH}_3\text{-CH}_2\text{-C≡CH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CH}_3\text{-CH}_2\text{-CO-CH}_3$$

Forms enol: CH₃-CH₂-C(OH)=CH₂ → Tautomerizes to CH₃-CH₂-CO-CH₃

Why ketone and not aldehyde?

Because H and OH add across triple bond following Markovnikov:

  • H adds to terminal C (has more H already)
  • OH adds to next C (more substituted)

Result: Ketone

For aldehyde: Would need anti-Markovnikov addition (not possible with H₂SO₄)

To get aldehyde: Use hydroboration-oxidation (anti-Markovnikov)

$$\text{CH}_3\text{-CH}_2\text{-C≡CH} \xrightarrow{\text{BH}_3/\text{H}_2\text{O}_2} \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CHO}$$

JEE Takeaway:

  • H₂SO₄/HgSO₄ → Markovnikov → Ketone (from terminal alkyne)
  • Hydroboration-oxidation → Anti-Markovnikov → Aldehyde

Quick Revision Table

Property/ReactionDetailsKey Points
General FormulaCₙH₂ₙ₋₂Two H less than alkenes
Hybridizationsp50% s-character → acidic
Bond1σ + 2πTriple bond
Acidity (pKa)HC≡CH: 25Can form acetylide with NaNH₂
Hydrogenation+ 2H₂ → AlkanePt/Pd/Ni catalyst
Partial reductionLindlar → cisNa/NH₃ → trans
HX additionMarkovnikovGeminal dihalide with excess
HydrationH₂SO₄/HgSO₄ → KetoneVia enol intermediate
Metal acetylide testAgNO₃/NH₃ → pptOnly terminal alkynes
AlkylationHC≡C⁻ + R-X → R-C≡CHBuild longer chains

Quick Decision Tree

Working with alkynes?
├─ Need to identify?
│  ├─ Br₂/CCl₄ → Decolorizes (unsaturated)
│  └─ AgNO₃/NH₃ → ppt (terminal) or no ppt (internal)
├─ Need alkene from alkyne?
│  ├─ Want cis → Lindlar's catalyst
│  └─ Want trans → Na/liquid NH₃
├─ Need carbonyl from alkyne?
│  ├─ Want ketone → H₂SO₄/HgSO₄ (Markovnikov)
│  └─ Want aldehyde → Hydroboration-oxidation (anti-Markovnikov)
└─ Need longer chain?
   └─ Alkylation: 1. NaNH₂  2. R-X

Connection to Other Topics

Prerequisites:

Related Topics:

Applications:


Teacher’s Summary

Key Takeaways

1. Alkynes have C≡C triple bond (1σ + 2π) - Formula: CₙH₂ₙ₋₂

2. Unique Property: Acidic Character

  • Terminal alkynes (R-C≡C-H) are weakly acidic (pKa ≈ 25)
  • sp hybridization → 50% s-character → stabilizes negative charge
  • React with NaNH₂ to form acetylide ions (R-C≡C⁻)

3. Preparation Methods:

  • CaC₂ + H₂O → Acetylene (industrial)
  • Dehydrohalogenation: R-CHX-CHX-R + 2KOH → R-C≡C-R
  • Alkylation: HC≡C⁻ + R-X → R-C≡CH (chain building!)

4. Addition Reactions - Two moles can add!

ReagentProductSpecial Notes
H₂/Pt (excess)AlkaneComplete reduction
H₂/Lindlarcis-AlkeneSyn addition, poisoned catalyst
Na/NH₃trans-AlkeneAnti addition
HX (excess)Geminal dihalideBoth X on same C (Markovnikov)
H₂O/H₂SO₄Ketone/AldehydeVia enol, Markovnikov
HydroborationAldehydeAnti-Markovnikov

5. Tests for Terminal Alkynes:

  • AgNO₃/NH₃ → White precipitate (silver acetylide)
  • Cu₂Cl₂/NH₃ → Red precipitate (copper acetylide)
  • Internal alkynes (R-C≡C-R) → No precipitate

6. JEE Strategy:

High-Yield Concepts:

  • Acidic nature and acetylide formation (unique to alkynes!)
  • Markovnikov addition → geminal dihalides
  • Stereochemistry: Lindlar (cis) vs Na/NH₃ (trans)
  • Multi-step synthesis using alkylation

Common Traps:

  • Hydration gives carbonyl, NOT alcohol
  • HX addition gives geminal, NOT vicinal dihalides
  • Only NaNH₂ (not NaOH) can form acetylides
  • Peroxide effect doesn’t work with alkynes

7. Key Difference from Alkenes:

  • Can add TWO molecules of reagent
  • Terminal alkynes are acidic (alkenes are not)
  • Used in alkylation to build carbon chains

“Alkynes are the acid rebels of hydrocarbons - the only ones that can donate a proton!”

Master the acidic character and addition patterns, and you’ll ace alkyne questions! Next, explore benzene to see how three molecules of acetylene form aromatic rings!


Interactive Demo: Visualize Addition Reactions

Explore step-by-step mechanisms of electrophilic and nucleophilic addition reactions to alkynes.