The Hook: Synthesizing Life-Saving Drugs
Paracetamol (acetaminophen), one of the world’s most used pain relievers, is synthesized from p-nitrophenol through a series of reactions involving amine preparation!
The synthesis pathway: p-Nitrophenol → p-Aminophenol (via reduction) → Paracetamol (via acylation)
Other important amine-based drugs:
- Sulfa drugs: First antibiotics, synthesized from aniline
- Local anesthetics (Novocaine): Contains tertiary amine groups
- Adrenaline: Life-saving hormone, prepared via aromatic amine synthesis
Here’s the JEE question: How do you selectively prepare a primary amine without 2° and 3° amine contamination?
The Core Concept
Why Multiple Methods?
Different methods of amine preparation are needed because:
- Selectivity: Some methods give only 1° amines (Gabriel synthesis)
- Starting materials: Different substrates require different approaches
- Functionality: Preserve or introduce other functional groups
- Scale: Industrial vs laboratory methods differ
Method 1: Reduction of Nitro Compounds
Overview
Best for: Aromatic and aliphatic primary amines
General Reaction:
$$\boxed{\text{R-NO}_2 + 6[\text{H}] \rightarrow \text{R-NH}_2 + 2\text{H}_2\text{O}}$$Reducing Agents
Agent 1: Sn/HCl or Fe/HCl (Acidic Medium)
For aromatic nitro compounds:
$$\text{C}_6\text{H}_5\text{-NO}_2 + 6[\text{H}] \xrightarrow{\text{Sn/HCl}} \text{C}_6\text{H}_5\text{-NH}_2 + 2\text{H}_2\text{O}$$Mechanism:
C₆H₅-NO₂ → C₆H₅-NO → C₆H₅-NHOH → C₆H₅-NH₂
Nitrobenzene → Nitrosobenzene → Phenylhydroxylamine → Aniline
Product: Anilinium chloride (C₆H₅-NH₃⁺Cl⁻)
- Then neutralize with NaOH to get free amine
Example - Industrial synthesis of aniline:
$$\text{C}_6\text{H}_5\text{NO}_2 \xrightarrow{\text{Fe/HCl}} [\text{C}_6\text{H}_5\text{NH}_3^+]\text{Cl}^- \xrightarrow{\text{NaOH}} \text{C}_6\text{H}_5\text{NH}_2$$Agent 2: LiAlH₄ or H₂/Ni (Catalytic Hydrogenation)
For aliphatic and aromatic:
$$\text{CH}_3\text{-NO}_2 \xrightarrow{\text{LiAlH}_4} \text{CH}_3\text{-NH}_2$$ $$\text{C}_6\text{H}_5\text{-NO}_2 \xrightarrow{\text{H}_2/\text{Ni}, \Delta} \text{C}_6\text{H}_5\text{-NH}_2$$Advantages:
- Neutral conditions
- Doesn’t affect other functional groups (selective)
“Tin for Tough (aromatic), Lithium for Light (aliphatic)”
For aromatic nitro compounds:
- Sn/HCl or Fe/HCl (cheap, industrial scale)
For aliphatic or sensitive substrates:
- LiAlH₄ (mild, selective)
- H₂/Ni (catalytic, clean)
JEE Strategy: If compound has acid/base sensitive groups → use LiAlH₄ or H₂/Ni
Selective Reduction of Dinitro Compounds
Problem: Reduce one NO₂ group selectively in dinitro benzene
Solution: Use (NH₄)₂S (ammonium sulfide)
$$\text{m-}\text{NO}_2\text{-C}_6\text{H}_4\text{-NO}_2 \xrightarrow{(\text{NH}_4)_2\text{S}} \text{m-}\text{NO}_2\text{-C}_6\text{H}_4\text{-NH}_2$$Why selective?
- Mild reducing agent
- Reduces only ONE nitro group
- Used for preparing nitro-amines
Question type: “What product forms when m-dinitrobenzene is treated with (NH₄)₂S?”
Wrong answer: m-Phenylenediamine (both NO₂ reduced)
Correct answer: m-Nitroaniline (only one NO₂ reduced)
Key: (NH₄)₂S is mild, Sn/HCl would reduce both groups!
Interactive Demo: Visualize Reduction Mechanisms
See how nitro groups are reduced to amines step-by-step.
Method 2: Reduction of Nitriles (Cyanides)
Overview
Best for: Primary amines with one extra carbon
General Reaction:
$$\boxed{\text{R-CN} + 4[\text{H}] \rightarrow \text{R-CH}_2\text{-NH}_2}$$Reducing Agents
1. LiAlH₄ (Lithium Aluminium Hydride)
$$\text{CH}_3\text{-CN} \xrightarrow{\text{LiAlH}_4} \text{CH}_3\text{-CH}_2\text{-NH}_2$$2. H₂/Ni (Catalytic Hydrogenation)
$$\text{C}_6\text{H}_5\text{-CN} \xrightarrow{\text{H}_2/\text{Ni}} \text{C}_6\text{H}_5\text{-CH}_2\text{-NH}_2$$3. Na/C₂H₅OH (Sodium in ethanol)
$$\text{R-CN} \xrightarrow{\text{Na/C}_2\text{H}_5\text{OH}} \text{R-CH}_2\text{-NH}_2$$Application: Chain Extension
Key advantage: Adds one carbon while forming amine!
Example: Prepare propanamine from ethyl bromide
Step 1: Form nitrile
$$\text{CH}_3\text{CH}_2\text{Br} + \text{KCN} \rightarrow \text{CH}_3\text{CH}_2\text{-CN}$$Step 2: Reduce nitrile
$$\text{CH}_3\text{CH}_2\text{-CN} \xrightarrow{\text{LiAlH}_4} \text{CH}_3\text{CH}_2\text{-CH}_2\text{-NH}_2$$Result: Propanamine (3 carbons from 2 carbons!)
Q: How to prepare butanamine from propanol?
Retrosynthetic analysis:
CH₃-CH₂-CH₂-CH₂-NH₂ (target)
↑
(reduce nitrile)
↑
CH₃-CH₂-CH₂-CN
↑
(from halide)
↑
CH₃-CH₂-CH₂-Br
↑
(from alcohol)
↑
CH₃-CH₂-CH₂-OH (starting)
Solution:
- CH₃CH₂CH₂OH → CH₃CH₂CH₂Br (PBr₃)
- CH₃CH₂CH₂Br → CH₃CH₂CH₂CN (KCN)
- CH₃CH₂CH₂CN → CH₃CH₂CH₂CH₂NH₂ (LiAlH₄)
Related: Organic synthesis strategies
Method 3: Reduction of Amides
Overview
Best for: Primary amines (same carbon count)
General Reaction:
$$\boxed{\text{R-CO-NH}_2 \xrightarrow{\text{LiAlH}_4} \text{R-CH}_2\text{-NH}_2}$$Mechanism
Reagent: LiAlH₄ (powerful reducing agent)
Example:
$$\text{CH}_3\text{-CO-NH}_2 \xrightarrow{\text{LiAlH}_4} \text{CH}_3\text{-CH}_2\text{-NH}_2$$(Acetamide → Ethylamine)
Key point: C=O is reduced to CH₂
For N-substituted amides:
$$\text{R-CO-NH-R'} \xrightarrow{\text{LiAlH}_4} \text{R-CH}_2\text{-NH-R'}$$(Forms secondary amine)
$$\text{R-CO-NR'}_2 \xrightarrow{\text{LiAlH}_4} \text{R-CH}_2\text{-NR'}_2$$(Forms tertiary amine)
Crucial JEE concept:
- 1° Amide (R-CO-NH₂) → 1° Amine (R-CH₂-NH₂)
- 2° Amide (R-CO-NH-R’) → 2° Amine (R-CH₂-NH-R')
- 3° Amide (R-CO-NR’₂) → 3° Amine (R-CH₂-NR’₂)
The amide degree = amine degree!
This is different from Hoffmann bromamide (see next section)
Method 4: Hoffmann Bromamide Degradation
Overview
Best for: Primary amines with one less carbon than amide
General Reaction:
$$\boxed{\text{R-CO-NH}_2 + \text{Br}_2 + 4\text{NaOH} \rightarrow \text{R-NH}_2 + \text{Na}_2\text{CO}_3 + 2\text{NaBr} + 2\text{H}_2\text{O}}$$Key feature: Carbon chain decreases by one (decarboxylation)
Mechanism
Step 1: Formation of N-bromoamide
$$\text{R-CO-NH}_2 + \text{Br}_2 + 2\text{NaOH} \rightarrow \text{R-CO-NH-Br} + \text{NaBr} + 2\text{H}_2\text{O}$$Step 2: Formation of isocyanate (key intermediate)
$$\text{R-CO-NH-Br} + \text{NaOH} \rightarrow \text{R-N=C=O} + \text{NaBr} + \text{H}_2\text{O}$$(Isocyanate)
Step 3: Hydrolysis to amine
$$\text{R-N=C=O} + 2\text{NaOH} \rightarrow \text{R-NH}_2 + \text{Na}_2\text{CO}_3$$Examples
Example 1: Acetamide to Methylamine
$$\text{CH}_3\text{-CO-NH}_2 \xrightarrow{\text{Br}_2/\text{NaOH}} \text{CH}_3\text{-NH}_2 + \text{CO}_2$$Carbon count: 2 → 1 (lost as CO₂)
Example 2: Benzamide to Aniline
$$\text{C}_6\text{H}_5\text{-CO-NH}_2 \xrightarrow{\text{Br}_2/\text{NaOH}} \text{C}_6\text{H}_5\text{-NH}_2$$Example 3: Propionamide to Ethylamine
$$\text{CH}_3\text{CH}_2\text{-CO-NH}_2 \xrightarrow{\text{Br}_2/\text{NaOH}} \text{CH}_3\text{CH}_2\text{-NH}_2$$“Hoffmann Hates Carbon”
- Hoffmann degradation degrades (loses) one carbon
- Amide loses CO₂
- Forms amine with n-1 carbons
Contrast:
- LiAlH₄ reduction of amide → same carbon count
- Hoffmann degradation → one less carbon
JEE Memory aid: “LiAlH₄ is Loyal (keeps carbons), Hoffmann is Harsh (loses carbon)”
Question: “Benzamide is treated with (i) Br₂/NaOH and (ii) LiAlH₄. Identify products.”
Solution:
(i) Br₂/NaOH (Hoffmann):
$$\text{C}_6\text{H}_5\text{-CO-NH}_2 \rightarrow \text{C}_6\text{H}_5\text{-NH}_2$$Product: Aniline (lost CO₂)
(ii) LiAlH₄ (Reduction):
$$\text{C}_6\text{H}_5\text{-CO-NH}_2 \rightarrow \text{C}_6\text{H}_5\text{-CH}_2\text{-NH}_2$$Product: Benzylamine (kept all carbons)
Key difference: Carbon count!
Method 5: Gabriel Phthalimide Synthesis
Overview
Best for: Pure primary aliphatic amines (no 2° or 3° contamination)
Limitation: Only for 1° aliphatic amines (not aromatic)
Why important for JEE: Only method giving exclusively primary amines!
Mechanism
Step 1: Formation of phthalimide anion
O O
‖ ‖
C-NH + KOH → C-N⁻K⁺
| |
C-NH C=O
‖
O
(Phthalimide) (Phthalimide salt)
Step 2: N-alkylation (SN2 reaction)
$$\text{Phthalimide-N}^-\text{K}^+ + \text{R-X} \rightarrow \text{Phthalimide-N-R} + \text{KX}$$Step 3: Hydrolysis
$$\text{Phthalimide-N-R} \xrightarrow{\text{H}^+/\text{H}_2\text{O or NaOH}} \text{R-NH}_2 + \text{Phthalic acid}$$Complete Example
Synthesis of ethylamine:
Step 1:
$$\text{Phthalimide} + \text{KOH} \rightarrow \text{Potassium phthalimide}$$Step 2:
$$\text{Potassium phthalimide} + \text{CH}_3\text{CH}_2\text{Br} \rightarrow \text{N-Ethylphthalimide}$$Step 3:
$$\text{N-Ethylphthalimide} \xrightarrow{\text{H}_3\text{O}^+} \text{CH}_3\text{CH}_2\text{NH}_2 + \text{Phthalic acid}$$Advantages and Limitations
Advantages:
- ✓ Pure primary amine (no 2° or 3° byproducts)
- ✓ Clean reaction
- ✓ Easy separation (phthalic acid is insoluble)
Limitations:
- ✗ Only for aliphatic primary amines
- ✗ Cannot prepare aromatic amines (C₆H₅-NH₂)
- ✗ Requires alkyl halide (RX)
Question: Can you prepare aniline using Gabriel synthesis?
Answer: NO!
Reason:
- Requires C₆H₅-X (aryl halide)
- Aryl halides don’t undergo SN2 reactions
- C-X bond in aromatic ring is too strong
- No backside attack possible (sp² carbon)
For aniline: Use nitrobenzene reduction instead!
$$\text{C}_6\text{H}_5\text{NO}_2 \xrightarrow{\text{Sn/HCl}} \text{C}_6\text{H}_5\text{NH}_2$$Related: Haloalkanes and haloarenes
Q: How will you prepare 1-aminopropane using Gabriel synthesis?
Solution:
Required: CH₃-CH₂-CH₂-NH₂
Step 1: Prepare potassium phthalimide
$$\text{Phthalimide} + \text{KOH} \rightarrow \text{Potassium phthalimide} + \text{H}_2\text{O}$$Step 2: React with 1-bromopropane
$$\text{Potassium phthalimide} + \text{CH}_3\text{CH}_2\text{CH}_2\text{Br} \rightarrow \text{N-Propylphthalimide} + \text{KBr}$$Step 3: Hydrolyze
$$\text{N-Propylphthalimide} \xrightarrow{\text{HCl/}\text{H}_2\text{O}} \text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2 + \text{Phthalic acid}$$Advantage: Pure 1° amine, no contamination with 2° or 3° amines!
Method 6: Reduction of Imines and Oximes
Reduction of Imines (Reductive Amination)
Best for: Secondary and tertiary amines
General Reaction:
$$\text{R-CHO} + \text{R'-NH}_2 \rightarrow \text{R-CH=N-R'} \xrightarrow{[\text{H}]} \text{R-CH}_2\text{-NH-R'}$$Mechanism:
Step 1: Imine formation
$$\text{R-CHO} + \text{R'-NH}_2 \rightarrow \text{R-CH=N-R'} + \text{H}_2\text{O}$$(Carbonyl + Amine → Imine)
Step 2: Reduction
$$\text{R-CH=N-R'} \xrightarrow{\text{H}_2/\text{Ni or NaBH}_4} \text{R-CH}_2\text{-NH-R'}$$(Secondary amine)
Example:
$$\text{CH}_3\text{CHO} + \text{CH}_3\text{NH}_2 \rightarrow \text{CH}_3\text{CH=N-CH}_3 \xrightarrow{[\text{H}]} \text{CH}_3\text{CH}_2\text{-NH-CH}_3$$Reduction of Oximes
For primary amines:
$$\text{R}_2\text{C=N-OH} \xrightarrow{\text{LiAlH}_4} \text{R}_2\text{CH-NH}_2$$Example:
$$\text{CH}_3\text{-CO-CH}_3 \xrightarrow{\text{NH}_2\text{OH}} \text{CH}_3\text{-C(=N-OH)-CH}_3 \xrightarrow{\text{LiAlH}_4} (\text{CH}_3)_2\text{CH-NH}_2$$Method 7: Alkylation of Ammonia
Overview
Produces: Mixture of 1°, 2°, 3° amines and quaternary salt
Reaction:
$$\text{NH}_3 + \text{R-X} \rightarrow \text{RNH}_2 + \text{R}_2\text{NH} + \text{R}_3\text{N} + \text{R}_4\text{N}^+\text{X}^-$$Why Mixture Forms?
Step 1: Primary amine formation
$$\text{NH}_3 + \text{R-X} \rightarrow \text{R-NH}_2 + \text{HX}$$Problem: Primary amine is more nucleophilic than NH₃!
Step 2: Secondary amine formation
$$\text{R-NH}_2 + \text{R-X} \rightarrow \text{R}_2\text{NH} + \text{HX}$$Step 3: Tertiary amine formation
$$\text{R}_2\text{NH} + \text{R-X} \rightarrow \text{R}_3\text{N} + \text{HX}$$Step 4: Quaternary salt formation
$$\text{R}_3\text{N} + \text{R-X} \rightarrow \text{R}_4\text{N}^+\text{X}^-$$Controlling Product Distribution
Use excess ammonia to favor primary amine:
$$\text{NH}_3 + \text{CH}_3\text{I} \xrightarrow{\text{excess NH}_3} \text{CH}_3\text{NH}_2 \text{ (major)}$$Disadvantages of direct alkylation:
- ✗ Mixture of products (difficult separation)
- ✗ 1° amine is more nucleophilic than NH₃ (continues reacting)
- ✗ Low yield of desired product
JEE Strategy:
- If question asks for pure 1° amine → Use Gabriel synthesis
- If mixture acceptable → Direct alkylation with excess NH₃
Better alternatives:
- Gabriel synthesis (for pure 1° aliphatic)
- Hoffmann degradation (for pure 1°)
- Reduction of nitro/nitrile (for pure 1°)
Comparison Table: Preparation Methods
| Method | Product Type | Carbon Change | Selectivity | Best For |
|---|---|---|---|---|
| Nitro reduction | 1° | No change | High | Aromatic & aliphatic |
| Nitrile reduction | 1° | +1 carbon | High | Chain extension |
| Amide + LiAlH₄ | 1°, 2°, 3° | No change | High | Same carbon count |
| Hoffmann | 1° only | -1 carbon | High | From amides |
| Gabriel | 1° aliphatic | No change | Highest | Pure 1° aliphatic |
| Alkylation of NH₃ | Mixture | No change | Low | Avoid for pure products |
| Reductive amination | 2° or 3° | Varies | Moderate | Secondary/tertiary |
Common Mistakes to Avoid
Wrong: “Prepare aniline using Gabriel synthesis”
Why wrong: Gabriel synthesis requires SN2 reaction with RX. Aryl halides (Ar-X) don’t undergo SN2!
Correct method for aniline:
$$\text{C}_6\text{H}_5\text{NO}_2 \xrightarrow{\text{Sn/HCl}} \text{C}_6\text{H}_5\text{NH}_2$$Rule: Gabriel = Aliphatic 1° amines ONLY
Question: Benzamide → Product?
Wrong reasoning: “Both give amines, so same product”
Correct analysis:
With LiAlH₄:
$$\text{C}_6\text{H}_5\text{CO-NH}_2 \rightarrow \text{C}_6\text{H}_5\text{CH}_2\text{NH}_2$$(Benzylamine - 7 carbons)
With Br₂/NaOH (Hoffmann):
$$\text{C}_6\text{H}_5\text{CO-NH}_2 \rightarrow \text{C}_6\text{H}_5\text{NH}_2$$(Aniline - 6 carbons)
Key: Count carbons!
Wrong: “CH₃I + NH₃ → only CH₃NH₂”
Correct: Mixture of CH₃NH₂, (CH₃)₂NH, (CH₃)₃N, and (CH₃)₄N⁺I⁻
Why: Primary amine is more nucleophilic than NH₃, keeps reacting
Solution for pure 1°: Use Gabriel synthesis or reduce RNO₂/RCN
Practice Problems
Level 1: Foundation (NCERT)
Q: How will you convert: (a) Nitrobenzene to aniline (b) Ethanamide to methanamine
Solution:
(a) Nitrobenzene to Aniline:
$$\text{C}_6\text{H}_5\text{NO}_2 \xrightarrow{\text{Sn + HCl}} [\text{C}_6\text{H}_5\text{NH}_3^+]\text{Cl}^- \xrightarrow{\text{NaOH}} \text{C}_6\text{H}_5\text{NH}_2$$Method: Reduction of nitro compound
(b) Ethanamide to Methanamine:
$$\text{CH}_3\text{-CO-NH}_2 \xrightarrow{\text{Br}_2 + 4\text{NaOH}} \text{CH}_3\text{NH}_2 + \text{Na}_2\text{CO}_3$$Method: Hoffmann bromamide degradation Note: Carbon count decreases (2 → 1)
Q: Write the steps involved in Gabriel synthesis of butylamine.
Solution:
Target: CH₃CH₂CH₂CH₂NH₂
Step 1: Phthalimide + KOH → Potassium phthalimide
Step 2:
$$\text{Potassium phthalimide} + \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Br} \rightarrow \text{N-Butylphthalimide}$$Step 3:
$$\text{N-Butylphthalimide} \xrightarrow{\text{H}_3\text{O}^+ \text{ or } \text{NaOH}} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2$$Byproduct: Phthalic acid (removed by washing)
Level 2: JEE Main
Q: Benzamide is treated with Br₂ and KOH. The product formed is: (A) Benzylamine (B) Aniline (C) Benzyl alcohol (D) Benzoic acid
Solution: (B) Aniline
Reaction: Hoffmann bromamide degradation
$$\text{C}_6\text{H}_5\text{-CO-NH}_2 \xrightarrow{\text{Br}_2/\text{KOH}} \text{C}_6\text{H}_5\text{-NH}_2 + \text{CO}_2$$Mechanism:
- Formation of N-bromobenzamide
- Rearrangement to phenyl isocyanate (C₆H₅-N=C=O)
- Hydrolysis to aniline
Key: One carbon lost as CO₂!
(A) is wrong: Benzylamine would be product with LiAlH₄ reduction
Q: How will you prepare propylamine from ethanol?
Solution:
Retrosynthetic analysis: CH₃CH₂CH₂NH₂ ← CH₃CH₂CN ← CH₃CH₂Br ← CH₃CH₂OH
Forward synthesis:
Step 1: Alcohol → Alkyl bromide
$$\text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\text{PBr}_3} \text{CH}_3\text{CH}_2\text{Br}$$Step 2: Alkyl bromide → Nitrile (SN2)
$$\text{CH}_3\text{CH}_2\text{Br} + \text{KCN} \rightarrow \text{CH}_3\text{CH}_2\text{CN} + \text{KBr}$$Step 3: Nitrile → Amine (reduction)
$$\text{CH}_3\text{CH}_2\text{CN} \xrightarrow{\text{LiAlH}_4} \text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2$$Advantage: Chain extended by one carbon via nitrile!
Related: Haloalkanes
Level 3: JEE Advanced
Q: Suggest a method to convert:
$$\text{O}_2\text{N-C}_6\text{H}_4\text{-CO-NH}_2 \rightarrow \text{H}_2\text{N-C}_6\text{H}_4\text{-CO-NH}_2$$(Reduce only the nitro group, not the amide)
Solution:
Challenge: Selective reduction of NO₂ in presence of CONH₂
Reagent: Fe/HCl or Sn/HCl (selective for aromatic NO₂)
$$\text{p-}\text{NO}_2\text{-C}_6\text{H}_4\text{-CO-NH}_2 \xrightarrow{\text{Fe/HCl}} \text{p-}\text{H}_2\text{N-C}_6\text{H}_4\text{-CO-NH}_2$$Why selective:
- Aromatic NO₂ is easily reduced by Sn/HCl
- Amide group is stable under these conditions
- LiAlH₄ would reduce BOTH (avoid!)
Product: p-Aminobenzamide
JEE Concept: Choice of reducing agent determines selectivity!
Q: An organic compound A (C₃H₇NO₂) on reduction with Sn/HCl followed by treatment with NaOH gives compound B. B on treatment with CHCl₃ and KOH gives foul smell. Identify A and B.
Solution:
Analysis of clues:
Clue 1: Reduction with Sn/HCl → suggests nitro compound Clue 2: Foul smell with CHCl₃ + KOH → Carbylamine test (positive for 1° amine)
Molecular formula: C₃H₇NO₂
Possible structures:
- CH₃-CH₂-CH₂-NO₂ (1-Nitropropane)
- (CH₃)₂CH-NO₂ (2-Nitropropane)
- CH₃CH(NO₂)CH₃ would give 2° amine (no carbylamine test)
Since carbylamine test is positive → 1° amine → A must be 1-nitropropane
Compound A: CH₃CH₂CH₂NO₂ (1-Nitropropane)
Reduction:
$$\text{CH}_3\text{CH}_2\text{CH}_2\text{NO}_2 \xrightarrow{\text{Sn/HCl, NaOH}} \text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2$$Compound B: CH₃CH₂CH₂NH₂ (1-Propylamine)
Carbylamine test:
$$\text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2 + \text{CHCl}_3 + 3\text{KOH} \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{-NC} + 3\text{KCl} + 3\text{H}_2\text{O}$$Foul smell: Propyl isocyanide (carbylamine)
Related: Classification of amines
Quick Revision Box
| Starting Material | Reagent | Product Type | Carbon Change | Key Point |
|---|---|---|---|---|
| R-NO₂ | Sn/HCl or LiAlH₄ | 1° amine | None | Best for aromatic |
| R-CN | LiAlH₄ or H₂/Ni | 1° amine | +1 | Chain extension |
| R-CO-NH₂ | LiAlH₄ | 1° amine | None | Keeps carbons |
| R-CO-NH₂ | Br₂/NaOH | 1° amine | -1 | Hoffmann degradation |
| Phthalimide | (1) KOH (2) RX (3) H₃O⁺ | 1° aliphatic | None | Pure 1° only |
| NH₃ | R-X | Mixture | None | Avoid (impure) |
| R-CHO + R’-NH₂ | H₂/Ni | 2° amine | Varies | Reductive amination |
Decision Tree: Choosing Preparation Method
Need to prepare amine?
│
├─ Primary amine?
│ ├─ Pure 1° aliphatic needed?
│ │ └─ Gabriel synthesis (phthalimide route)
│ │
│ ├─ From nitro compound?
│ │ └─ Reduce with Sn/HCl (aromatic) or LiAlH₄
│ │
│ ├─ Need one more carbon?
│ │ └─ RX → RCN → RCH₂NH₂ (nitrile route)
│ │
│ ├─ From amide (same carbons)?
│ │ └─ LiAlH₄ reduction
│ │
│ └─ From amide (one less carbon)?
│ └─ Hoffmann bromamide degradation
│
├─ Secondary amine?
│ ├─ R-CHO + R'-NH₂ → Reductive amination
│ └─ R-CO-NHR' + LiAlH₄ → Reduction
│
└─ Tertiary amine?
└─ R-CO-NR'₂ + LiAlH₄ → Reduction
Connection to Other Topics
Prerequisites:
- Alkyl Halides - For Gabriel synthesis, alkylation
- Nitro Compounds - Reduction to amines
- Organic Reactions - SN2, reduction mechanisms
Related Topics:
- Classification of Amines - Structure and nomenclature
- Properties of Amines - Reactions of prepared amines
- Basicity of Amines - Why different basicities
Applications:
- Diazonium Salts - From aromatic amines
- Biomolecules - Amino acid synthesis
Summary
1. High-Selectivity Methods (JEE Favorites):
Gabriel Synthesis:
- Only method for pure primary aliphatic amines
- Cannot prepare aromatic amines
- Phthalimide → N-alkyl phthalimide → 1° amine
Hoffmann Degradation:
- Primary amines with one less carbon
- R-CO-NH₂ + Br₂/NaOH → R-NH₂ + CO₂
- Loses carbon as CO₂
2. Reduction Methods:
Nitro → Amine: (No carbon change)
- Sn/HCl for aromatic (industrial)
- LiAlH₄ for sensitive substrates
Nitrile → Amine: (+1 carbon)
- R-CN → R-CH₂-NH₂ (chain extension)
- Useful for retrosynthesis
Amide → Amine:
- LiAlH₄: Keeps carbon count
- Hoffmann: Loses one carbon
3. Low-Selectivity Method:
Direct Alkylation (NH₃ + RX):
- Gives mixture (1°, 2°, 3°, quaternary)
- Avoid for pure products
- Use excess NH₃ if necessary
4. JEE Strategy:
| Requirement | Method |
|---|---|
| Pure 1° aliphatic | Gabriel synthesis |
| Aromatic 1° | Nitro reduction |
| Chain extension | Nitrile reduction |
| From amide (same C) | LiAlH₄ |
| From amide (C-1) | Hoffmann |
| 2° or 3° amine | Reductive amination |
“For amines, choose your method wisely - Gabriel for purity, Hoffmann for degradation, reduction for retention!”
Next, study amine properties and reactions to understand how these prepared amines react!