Physical and Chemical Properties of Amines

Complete guide to amine properties - boiling point trends, solubility, basicity, acylation, diazotization, and carbylamine reactions for JEE

The Hook: Why Fish Smell and Proteins Don’t

Connect: Real Life → Chemistry

The Fishy Smell Mystery: Fresh fish is odorless, but decomposing fish releases trimethylamine [(CH₃)₃N] - a volatile, basic amine. That’s why squeezing lemon (citric acid) on fish neutralizes the smell!

But here’s the paradox: Proteins in our body contain thousands of amino groups (-NH₂), yet we don’t smell fishy. Why?

Answer: The amino groups in proteins are:

  1. Not free (part of peptide bonds)
  2. Protonated at physiological pH (-NH₃⁺)
  3. Not volatile (large molecules)

JEE Connection: Understanding amine properties explains:

  • Why primary amines have higher boiling points than tertiary
  • Why methylamine is water-soluble but aniline isn’t
  • Why amines are bases but strength varies

Physical Properties

Boiling Points

graph LR
    A[Boiling Point Factors] --> B[Hydrogen Bonding]
    A --> C[Molecular Mass]
    A --> D[Van der Waals Forces]
    B --> E[1° > 2° > 3°]
    C --> F[Higher mass = Higher bp]

For amines of similar mass:

$$\boxed{\text{Primary} > \text{Secondary} > \text{Tertiary}}$$

Reason: Hydrogen bonding capability

Amine TypeH-bonding abilityBoiling Point
Primary (RNH₂)2 N-H bonds → Strong H-bondingHighest
Secondary (R₂NH)1 N-H bond → Moderate H-bondingMedium
Tertiary (R₃N)0 N-H bonds → No H-bondingLowest

Examples with Data

CompoundTypeMolecular MassBoiling Point (°C)
CH₃NH₂31-6
(CH₃)₂NH457
(CH₃)₃N593
C₂H₅NH₂4517
C₃H₇NH₂5948
JEE Pattern Recognition

Unexpected observation: (CH₃)₃N has higher mass but lower bp than (CH₃)₂NH!

Reason: Hydrogen bonding dominates over mass

JEE Formula:

$$\text{bp} \propto \text{H-bonding} > \text{Mass} > \text{Van der Waals}$$

Memory trick: “Hydrogen bonding trumps mass!”

Comparison with Alcohols and Hydrocarbons

For similar mass:

$$\boxed{\text{Alcohols} > \text{Primary Amines} > \text{Hydrocarbons}}$$

Example:

  • CH₃CH₂OH (Ethanol): 78°C
  • CH₃CH₂NH₂ (Ethylamine): 17°C
  • CH₃CH₂CH₃ (Propane): -42°C

Why alcohols > amines?

  • O is more electronegative than N
  • O-H···O bonding stronger than N-H···N
  • Oxygen pulls H more strongly
Memory Trick: Boiling Points

“Harry (H-bonding) Matters Most”

Boiling point order (similar mass): Alcohols > 1° Amines > 2° Amines > 3° Amines > Hydrocarbons

JEE Shortcut: Count N-H bonds:

  • 2 N-H (primary) → Highest bp among amines
  • 1 N-H (secondary) → Medium bp
  • 0 N-H (tertiary) → Lowest bp

Related: Hydrogen bonding

Interactive Demo: Visualize Amine Reactions

See how amines react with various reagents and form different products.


Solubility in Water

Lower aliphatic amines (C₁-C₄): Water-soluble

Higher aliphatic amines (>C₆): Water-insoluble

Aromatic amines: Generally insoluble (except in acidic solution)

Explanation

Why lower amines are soluble:

  • Form H-bonds with water: R-NH₂···H-O-H
  • Small hydrophobic (R) part
  • Can accept and donate H-bonds

Why higher amines are insoluble:

  • Large hydrophobic alkyl chain
  • H-bonding not enough to overcome hydrophobic effect

Why aromatic amines (aniline) are insoluble:

  • Large hydrophobic benzene ring
  • NH₂ group can’t compensate for phenyl group

Solubility Order

In water (C₁-C₄):

$$\text{Primary} \approx \text{Secondary} > \text{Tertiary}$$

Reason: Primary and secondary can both donate and accept H-bonds; tertiary can only accept

AmineSolubility in waterH-bonding
CH₃NH₂Highly solubleCan donate (2 H) & accept
(CH₃)₂NHHighly solubleCan donate (1 H) & accept
(CH₃)₃NSolubleCan only accept
C₆H₅NH₂InsolubleHydrophobic phenyl ring
JEE Concept: Acidified Water

Q: Aniline is insoluble in water but soluble in dilute HCl. Why?

Solution:

In water:

$$\text{C}_6\text{H}_5\text{NH}_2 \text{ (insoluble - hydrophobic)}$$

In HCl:

$$\text{C}_6\text{H}_5\text{NH}_2 + \text{HCl} \rightarrow [\text{C}_6\text{H}_5\text{NH}_3^+]\text{Cl}^-$$

Anilinium chloride is ionic → water-soluble!

Key concept: Amines become water-soluble as their salts

JEE Application: Separation of aniline from organic mixtures using acid extraction


Odor and Physical State

Smell characteristics:

AminesOdorExample
Lower aliphatic (C₁-C₄)Fishy, pungentMethylamine, Trimethylamine
Higher aliphaticLess pungentOctylamine (weak odor)
AromaticUnpleasantAniline (oily, amine-like)

Physical state at room temperature:

  • C₁ (Methylamine): Gas (-6°C bp)
  • C₂-C₃: Gases/volatile liquids
  • C₄-C₁₈: Liquids
  • >C₁₈: Solids

Chemical Properties

Basicity of Amines

Fundamental concept: Amines are Lewis bases (lone pair donors)

$$\text{R-NH}_2 + \text{H}^+ \rightleftarrows \text{R-NH}_3^+$$

Base strength measured by:

  • Kb (base dissociation constant)
  • pKb (lower pKb = stronger base)
  • pKa of conjugate acid (higher pKa = stronger base)

Detailed basicity comparison: See Basicity of Amines


Reactions of Amines

graph TD
    A[Amine Reactions] --> B[With Acids]
    A --> C[Acylation]
    A --> D[Benzoylation]
    A --> E[Alkylation]
    A --> F[Carbylamine]
    A --> G[Diazotization]
    A --> H[Electrophilic Substitution]

1. Reaction with Acids (Salt Formation)

General Reaction:

$$\boxed{\text{R-NH}_2 + \text{HCl} \rightarrow [\text{R-NH}_3^+]\text{Cl}^-}$$

Examples:

Aliphatic amine:

$$\text{CH}_3\text{NH}_2 + \text{HCl} \rightarrow [\text{CH}_3\text{NH}_3^+]\text{Cl}^-$$

(Methylammonium chloride)

Aromatic amine:

$$\text{C}_6\text{H}_5\text{NH}_2 + \text{HCl} \rightarrow [\text{C}_6\text{H}_5\text{NH}_3^+]\text{Cl}^-$$

(Anilinium chloride)

Properties of amine salts:

  • Ionic, crystalline solids
  • Water-soluble (even if amine wasn’t)
  • Non-basic (no lone pair)
  • Can regenerate amine with base:
$$[\text{R-NH}_3^+]\text{Cl}^- + \text{NaOH} \rightarrow \text{R-NH}_2 + \text{NaCl} + \text{H}_2\text{O}$$
JEE Application: Amine Separation

Problem: Separate aniline from an organic mixture

Solution:

Step 1: Add dilute HCl

  • Aniline → Anilinium chloride (water-soluble)
  • Other organics remain in organic layer

Step 2: Separate aqueous layer (contains anilinium chloride)

Step 3: Add NaOH

  • Regenerates free aniline
  • Extract with ether

Key concept: Acid-base extraction using salt formation


2. Acylation (Reaction with Acid Chlorides/Anhydrides)

Purpose: Replace H on nitrogen with acyl group (R-CO-)

Acylation with Acetyl Chloride

General Reaction:

$$\boxed{\text{R-NH}_2 + \text{CH}_3\text{COCl} \rightarrow \text{R-NH-CO-CH}_3 + \text{HCl}}$$

Examples:

Primary amine:

$$\text{C}_6\text{H}_5\text{NH}_2 + \text{CH}_3\text{COCl} \rightarrow \text{C}_6\text{H}_5\text{-NH-CO-CH}_3 + \text{HCl}$$

(Aniline → Acetanilide)

Secondary amine:

$$(CH_3)_2\text{NH} + \text{CH}_3\text{COCl} \rightarrow (\text{CH}_3)_2\text{N-CO-CH}_3 + \text{HCl}$$

(Dimethylamine → N,N-Dimethylacetamide)

Tertiary amine:

$$(\text{CH}_3)_3\text{N} + \text{CH}_3\text{COCl} \rightarrow \text{No reaction (no N-H to replace)}$$

Acylation with Acetic Anhydride

$$\text{R-NH}_2 + (\text{CH}_3\text{CO})_2\text{O} \rightarrow \text{R-NH-CO-CH}_3 + \text{CH}_3\text{COOH}$$

Example:

$$\text{C}_6\text{H}_5\text{NH}_2 + (\text{CH}_3\text{CO})_2\text{O} \rightarrow \text{C}_6\text{H}_5\text{-NH-CO-CH}_3 + \text{CH}_3\text{COOH}$$
Why Acylation is Important

1. Protection of amino group:

  • Prevents oxidation
  • Protects during other reactions
  • Can be removed later by hydrolysis

2. Reduces basicity:

  • Amide is non-basic (lone pair delocalized)
  • Useful for controlling reactivity

3. Controls electrophilic substitution:

Aniline (strongly activating):

  • Polysubstitution, oxidation issues

Acetanilide (moderately activating):

  • Controlled monosubstitution
  • Ortho/para directing
  • No oxidation

JEE Strategy:

  • Direct halogenation of aniline → polysubstitution
  • Acetylate first → controlled monosubstitution → deprotect

3. Benzoylation (Schotten-Baumann Reaction)

Reagent: Benzoyl chloride (C₆H₅COCl) + NaOH (aqueous)

General Reaction:

$$\boxed{\text{R-NH}_2 + \text{C}_6\text{H}_5\text{COCl} \xrightarrow{\text{NaOH}} \text{R-NH-CO-C}_6\text{H}_5 + \text{NaCl} + \text{H}_2\text{O}}$$

Example:

$$\text{C}_6\text{H}_5\text{NH}_2 + \text{C}_6\text{H}_5\text{COCl} \xrightarrow{\text{NaOH}} \text{C}_6\text{H}_5\text{-NH-CO-C}_6\text{H}_5$$

(Aniline → Benzanilide)

Why use NaOH?

  • Neutralizes HCl formed
  • Reaction proceeds in aqueous medium

Distinguishing amines:

Amine TypeProduct with C₆H₅COClSolubility in NaOH
1° amineR-NH-CO-C₆H₅Insoluble
2° amineR₂N-CO-C₆H₅Insoluble
3° amineNo reaction-
Hinsberg Test Revisited

Alternative to Hinsberg: Benzoylation can also distinguish amines

With C₆H₅COCl:

  • 1° and 2° amines → Products (benzamides)
  • 3° amine → No reaction

But Hinsberg (C₆H₅SO₂Cl) is better because:

  • 1° product soluble in base (acidic H)
  • 2° product insoluble in base
  • 3° no reaction

Distinguishes all three!

Related: Classification of amines


Problem: Gives mixture of products

$$\text{R-NH}_2 + \text{R'-X} \rightarrow \text{R-NH-R'} + \text{R}_2\text{N-R'} + \text{R}_3\text{N} + \text{R}_4\text{N}^+\text{X}^-$$

Why mixture?

  • Primary amine more nucleophilic than NH₃
  • Keeps reacting with R-X
  • Over-alkylation occurs

Better method: Gabriel synthesis for pure primary amines

Related: Preparation of amines


5. Carbylamine Reaction (Isocyanide Test)

Test for: Primary amines ONLY

Reagent: CHCl₃ + alcoholic KOH (heat)

General Reaction:

$$\boxed{\text{R-NH}_2 + \text{CHCl}_3 + 3\text{KOH} \xrightarrow{\Delta} \text{R-N≡C} + 3\text{KCl} + 3\text{H}_2\text{O}}$$

Product: Isocyanide (carbylamine) - offensive smell!

Mechanism:

Step 1: CHCl₃ → Dichlorocarbene

$$\text{CHCl}_3 + \text{KOH} \rightarrow :\text{CCl}_2 + \text{KCl} + \text{H}_2\text{O}$$

Step 2: Carbene insertion

$$\text{R-NH}_2 + :\text{CCl}_2 \rightarrow \text{R-NH-CCl}_2\text{H}$$

Step 3: Elimination to isocyanide

$$\text{R-NH-CCl}_2\text{H} \xrightarrow{-2\text{HCl}} \text{R-N≡C}$$

Examples:

Positive test (1° amines):

$$\text{CH}_3\text{NH}_2 \xrightarrow{\text{CHCl}_3/\text{KOH}} \text{CH}_3\text{-NC} + \text{foul smell}$$ $$\text{C}_6\text{H}_5\text{NH}_2 \xrightarrow{\text{CHCl}_3/\text{KOH}} \text{C}_6\text{H}_5\text{-NC} + \text{foul smell}$$

Negative test (2° and 3° amines):

$$(CH_3)_2\text{NH} \xrightarrow{\text{CHCl}_3/\text{KOH}} \text{No reaction, no smell}$$
JEE Trap: Carbylamine Test Scope

Common mistake: “Carbylamine test distinguishes aliphatic from aromatic amines”

Wrong! It distinguishes 1° from 2° and 3° amines

Correct understanding:

  • Both aliphatic and aromatic primary amines give positive test
  • C₂H₅NH₂ (aliphatic 1°) → Positive ✓
  • C₆H₅NH₂ (aromatic 1°) → Positive ✓
  • (CH₃)₂NH (aliphatic 2°) → Negative
  • C₆H₅NHCH₃ (aromatic 2°) → Negative

Test distinguishes: 1° vs (2° and 3°), NOT aliphatic vs aromatic


6. Reaction with Nitrous Acid (HNO₂)

Most important reaction for JEE!

Different products for 1°, 2°, and 3° amines

Primary Aliphatic Amines

Reaction: Forms alcohol + N₂ gas (via diazonium intermediate)

$$\text{R-NH}_2 + \text{HNO}_2 \xrightarrow{0-5°\text{C}} [\text{R-N}_2^+]\text{Cl}^- \xrightarrow{\text{unstable}} \text{R-OH} + \text{N}_2↑$$

Example:

$$\text{CH}_3\text{CH}_2\text{NH}_2 \xrightarrow{\text{NaNO}_2/\text{HCl}} \text{CH}_3\text{CH}_2\text{OH} + \text{N}_2↑$$

Observation: Evolution of nitrogen gas (brisk effervescence)

Mechanism:

  1. Nitrosation: R-NH₂ → R-NH-N=O
  2. Tautomerization: R-NH-N=O → R-N=N-OH
  3. Dehydration: R-N=N-OH → R-N₂⁺ (diazonium cation)
  4. Loss of N₂: R-N₂⁺ → R⁺ + N₂ (carbocation)
  5. Nucleophilic attack: R⁺ + H₂O → R-OH

Note: Aliphatic diazonium salts are unstable even at 0°C!

Primary Aromatic Amines

Reaction: Forms stable diazonium salt (0-5°C)

$$\text{C}_6\text{H}_5\text{NH}_2 + \text{NaNO}_2 + 2\text{HCl} \xrightarrow{0-5°\text{C}} [\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- + \text{NaCl} + 2\text{H}_2\text{O}$$

Product: Benzenediazonium chloride (stable below 5°C)

Key difference: Aromatic diazonium salts are stable at low temperature!

Importance: Used for synthesis of many compounds!

Related: Diazonium salts

Secondary Amines (Aliphatic and Aromatic)

Reaction: Forms N-nitrosoamine (yellow oil)

$$\text{R}_2\text{NH} + \text{HNO}_2 \rightarrow \text{R}_2\text{N-N=O} + \text{H}_2\text{O}$$

Example:

$$(\text{CH}_3)_2\text{NH} + \text{HNO}_2 \rightarrow (\text{CH}_3)_2\text{N-N=O}$$

(N-Nitrosodimethylamine - yellow oil)

Observation: Formation of yellow/orange oily layer

Note: N-Nitrosamines are carcinogenic!

Tertiary Aliphatic Amines

Reaction: Forms nitrite salt (ionic)

$$\text{R}_3\text{N} + \text{HNO}_2 \rightarrow [\text{R}_3\text{NH}^+]\text{NO}_2^-$$

Example:

$$(\text{CH}_3)_3\text{N} + \text{HNO}_2 \rightarrow [(\text{CH}_3)_3\text{NH}^+]\text{NO}_2^-$$

(Trimethylammonium nitrite)

Observation: Water-soluble salt formed

Tertiary Aromatic Amines

Reaction: Electrophilic substitution at para position

$$\text{C}_6\text{H}_5\text{-N(CH}_3)_2 + \text{HNO}_2 \rightarrow \text{p-}\text{NO-C}_6\text{H}_4\text{-N(CH}_3)_2$$

Product: p-Nitroso-N,N-dimethylaniline (green compound)

Observation: Green coloration

Memory Trick: Nitrous Acid Reactions

“One-Two-Three, Different as can be!”

1° Amine:

  • Aliphatic → Alcohol + N₂ (gas evolution)
  • Aromatic → Diazonium salt (stable at 0-5°C)

2° Amine:

  • Both → Yellow oily N-nitrosamine

3° Amine:

  • Aliphatic → Ionic salt (colorless)
  • Aromatic → Green p-nitroso product

JEE Shortcut Table:

AmineProductObservation
1° aliphaticR-OH + N₂Gas bubbles
1° aromaticAr-N₂⁺Cl⁻Stable salt
2° (both)R₂N-N=OYellow oil
3° aliphaticR₃NH⁺NO₂⁻Salt
3° aromaticp-NO-Ar-NR₂Green color

7. Electrophilic Aromatic Substitution in Aniline

Key concept: -NH₂ group is strongly activating and ortho-para directing

Why activating?

  • Lone pair on nitrogen delocalizes into benzene ring
  • Increases electron density (especially at ortho/para)
  • Resonance stabilization of intermediate

Resonance structures:

  NH₂              NH₂⁺             NH₂⁺             NH₂⁺
   |                ||               ||               ||
   ⟨⟩     ←→       ⟨⟩⁻     ←→      ⟨⟩⁻     ←→      ⟨⟩⁻
(ortho⁻)         (meta)          (para⁻)

Electron density: ortho ≈ para > meta

Halogenation of Aniline

Problem: Aniline is TOO reactive!

Without protection:

$$\text{C}_6\text{H}_5\text{NH}_2 + 3\text{Br}_2(\text{aq}) \rightarrow 2,4,6-\text{tribromoaniline} + 3\text{HBr}$$

Product: 2,4,6-Tribromoaniline (white precipitate)

All three positions substituted! (Cannot control)

Solution: Acetylation → Bromination → Deacetylation

Step 1: Protect -NH₂ (acetylation)

$$\text{C}_6\text{H}_5\text{NH}_2 + (\text{CH}_3\text{CO})_2\text{O} \rightarrow \text{C}_6\text{H}_5\text{-NH-CO-CH}_3$$

(Aniline → Acetanilide)

Step 2: Controlled bromination

$$\text{C}_6\text{H}_5\text{-NH-CO-CH}_3 + \text{Br}_2 \rightarrow \text{p-Br-C}_6\text{H}_4\text{-NH-CO-CH}_3$$

(Mainly para product)

Step 3: Deprotection (hydrolysis)

$$\text{p-Br-C}_6\text{H}_4\text{-NH-CO-CH}_3 \xrightarrow{\text{H}_3\text{O}^+} \text{p-Br-C}_6\text{H}_4\text{-NH}_2 + \text{CH}_3\text{COOH}$$

Result: p-Bromoaniline (controlled monosubstitution!)

JEE Strategy: Protection-Deprotection

Why protect amino group?

Free -NH₂:

  • Too strongly activating
  • Polysubstitution
  • Oxidation occurs
  • Loss of control

Acetylated -NH-CO-CH₃:

  • Moderately activating (resonance with C=O)
  • Monosubstitution (controlled)
  • No oxidation
  • Still ortho/para directing

General strategy:

Aniline → Acetanilide → Substituted acetanilide → Substituted aniline
(too reactive) (moderate) (controlled product) (desired product)

JEE loves this concept: Protection-deprotection is high-yield!

Nitration of Aniline

Problem: Direct nitration oxidizes aniline (HNO₃ is oxidizing)

Solution: Protect as acetanilide

Step 1: Acetylation

$$\text{C}_6\text{H}_5\text{NH}_2 + (\text{CH}_3\text{CO})_2\text{O} \rightarrow \text{C}_6\text{H}_5\text{-NH-CO-CH}_3$$

Step 2: Nitration

$$\text{C}_6\text{H}_5\text{-NH-CO-CH}_3 \xrightarrow{\text{HNO}_3/\text{H}_2\text{SO}_4} \text{p-NO}_2\text{-C}_6\text{H}_4\text{-NH-CO-CH}_3$$

Step 3: Hydrolysis

$$\text{p-NO}_2\text{-C}_6\text{H}_4\text{-NH-CO-CH}_3 \xrightarrow{\text{H}_2\text{O}/\text{H}^+} \text{p-NO}_2\text{-C}_6\text{H}_4\text{-NH}_2$$

Product: p-Nitroaniline

Sulphonation of Aniline

Special case: React as anilinium salt (prevents oxidation)

Step 1: Form anilinium sulfate

$$\text{C}_6\text{H}_5\text{NH}_2 + \text{H}_2\text{SO}_4 \rightarrow [\text{C}_6\text{H}_5\text{NH}_3^+]\text{HSO}_4^-$$

Step 2: Heat (sulphonation)

$$[\text{C}_6\text{H}_5\text{NH}_3^+]\text{HSO}_4^- \xrightarrow{180-200°\text{C}} \text{H}_2\text{N-C}_6\text{H}_4\text{-SO}_3\text{H}$$

Product: Sulfanilic acid (p-aminobenzenesulfonic acid)

Why meta directing as salt?

  • As salt (-NH₃⁺), the group is meta directing
  • Positive charge deactivates ortho/para
  • But high temperature overcomes this → para product

Oxidation of Amines

Amines are easily oxidized (lone pair is susceptible)

Oxidation of Aliphatic Amines

With K₂Cr₂O₇/H₂SO₄:

Primary:

$$\text{R-CH}_2\text{-NH}_2 \xrightarrow{[\text{O}]} \text{R-CHO or R-COOH}$$

Secondary:

$$\text{R}_2\text{CH-NH}_2 \xrightarrow{[\text{O}]} \text{R}_2\text{C=O}$$

Tertiary: Complex mixture (C-N bond cleavage)

Oxidation of Aromatic Amines

Aniline is easily oxidized (even by air!)

With K₂Cr₂O₇:

$$\text{C}_6\text{H}_5\text{NH}_2 \xrightarrow{[\text{O}]} \text{Black tar (complex mixture)}$$

With mild oxidizing agents (e.g., chromyl chloride):

$$\text{C}_6\text{H}_5\text{NH}_2 \rightarrow \text{Azobenzene, nitrosobenzene, etc.}$$
JEE Note: Aniline Oxidation

Important: Aniline cannot be oxidized to nitrobenzene!

Common mistake: C₆H₅NH₂ → C₆H₅NO₂ (oxidation)

Reality: Oxidation gives complex mixtures, not nitrobenzene

To get nitrobenzene from aniline: Must use indirect methods (diazotization, etc.)

Fresh aniline: Colorless Old aniline (exposed to air): Brown/black (oxidation products)


Common Mistakes to Avoid

Mistake #1: Boiling Point Trend

Wrong: “Tertiary amines have highest bp (largest mass)”

Correct: Primary > Secondary > Tertiary (H-bonding trumps mass)

Example:

  • (CH₃)₂NH (45 amu, bp = 7°C) > (CH₃)₃N (59 amu, bp = 3°C)

Reason: Dimethylamine has one N-H for H-bonding; trimethylamine has none!

Mistake #2: Direct Halogenation of Aniline

Wrong: C₆H₅NH₂ + Br₂ → p-Bromoaniline

Correct: C₆H₅NH₂ + 3Br₂ → 2,4,6-Tribromoaniline

For monosubstitution: Must protect as acetanilide first!

JEE pattern: Questions often ask for “monobromo product” - always acetylate first!

Mistake #3: Carbylamine Test Scope

Wrong: “Carbylamine test distinguishes aliphatic from aromatic amines”

Correct: “Carbylamine test distinguishes 1° from 2° and 3° amines”

Both aliphatic AND aromatic primary amines give positive test!

  • CH₃CH₂NH₂ → Positive (1° aliphatic)
  • C₆H₅NH₂ → Positive (1° aromatic)
  • (CH₃)₂NH → Negative (2°)

Practice Problems

Level 1: Foundation (NCERT)

Problem 1: Boiling Points

Q: Arrange in increasing order of boiling points: C₂H₅OH, (CH₃)₂NH, C₂H₅NH₂

Solution:

Molecular masses:

  • C₂H₅OH: 46
  • (CH₃)₂NH: 45
  • C₂H₅NH₂: 45

Similar masses → Compare H-bonding

H-bonding strength:

  • C₂H₅OH: O-H···O (strongest, O most electronegative)
  • C₂H₅NH₂: N-H···N (2 N-H bonds, moderate)
  • (CH₃)₂NH: N-H···N (1 N-H bond, weaker)

Order: (CH₃)₂NH < C₂H₅NH₂ < C₂H₅OH

Answer: Dimethylamine (7°C) < Ethylamine (17°C) < Ethanol (78°C)

Problem 2: Solubility

Q: Why is aniline insoluble in water but soluble in dilute HCl?

Solution:

In water:

  • Aniline (C₆H₅NH₂) has large hydrophobic phenyl group
  • Small -NH₂ cannot overcome hydrophobic effect
  • Insoluble

In dilute HCl:

$$\text{C}_6\text{H}_5\text{NH}_2 + \text{HCl} \rightarrow [\text{C}_6\text{H}_5\text{NH}_3^+]\text{Cl}^-$$
  • Forms anilinium chloride (ionic compound)
  • Ionic compounds are water-soluble
  • Soluble

Key concept: Amines form water-soluble salts with acids

Level 2: JEE Main

Problem 3: Distinction Between Amines

Q: How will you distinguish between the following pairs using a chemical test? (a) Aniline and N-methylaniline (b) Aniline and benzylamine

Solution:

(a) Aniline vs N-methylaniline:

Test: Carbylamine reaction (CHCl₃ + KOH, heat)

Aniline (1° amine):

$$\text{C}_6\text{H}_5\text{NH}_2 \xrightarrow{\text{CHCl}_3/\text{KOH}} \text{Foul smell} \text{ (positive)}$$

N-methylaniline (2° amine):

$$\text{C}_6\text{H}_5\text{-NH-CH}_3 \xrightarrow{\text{CHCl}_3/\text{KOH}} \text{No smell} \text{ (negative)}$$

(b) Aniline vs Benzylamine:

Test: Azo dye test (diazotization + coupling)

Aniline (aromatic 1°):

$$\text{C}_6\text{H}_5\text{NH}_2 \xrightarrow{\text{NaNO}_2/\text{HCl}, 0-5°\text{C}} \text{Diazonium salt (stable)}$$

Then couple with phenol → Orange-red dye

Benzylamine (aliphatic 1°):

$$\text{C}_6\text{H}_5\text{CH}_2\text{NH}_2 \xrightarrow{\text{NaNO}_2/\text{HCl}} \text{Alcohol + N}_2 \text{ (no stable diazonium)}$$

No dye formation

Related: Diazonium salts

Problem 4: Reaction Prediction

Q: Predict the products:

(a) (CH₃)₂NH + HNO₂ →

(b) C₆H₅N(CH₃)₂ + HNO₂ →

Solution:

(a) Secondary aliphatic amine + HNO₂:

$$(\text{CH}_3)_2\text{NH} + \text{HNO}_2 \rightarrow (\text{CH}_3)_2\text{N-N=O} + \text{H}_2\text{O}$$

Product: N-Nitrosodimethylamine (yellow oily liquid)

(b) Tertiary aromatic amine + HNO₂:

$$\text{C}_6\text{H}_5\text{N(CH}_3)_2 + \text{HNO}_2 \rightarrow \text{p-NO-C}_6\text{H}_4\text{-N(CH}_3)_2$$

Product: p-Nitroso-N,N-dimethylaniline (green compound)

Observation: Green coloration appears

Level 3: JEE Advanced

Problem 5: Multi-step Synthesis

Q: How will you prepare p-bromoaniline from aniline?

Solution:

Cannot do: Direct bromination (gives 2,4,6-tribromoaniline)

Strategy: Acetylation → Bromination → Deacetylation

Step 1: Protect amino group

$$\text{C}_6\text{H}_5\text{NH}_2 + (\text{CH}_3\text{CO})_2\text{O} \rightarrow \text{C}_6\text{H}_5\text{-NH-CO-CH}_3 + \text{CH}_3\text{COOH}$$

(Acetanilide - moderately activating)

Step 2: Controlled bromination

$$\text{C}_6\text{H}_5\text{-NH-CO-CH}_3 + \text{Br}_2 \rightarrow \text{p-Br-C}_6\text{H}_4\text{-NH-CO-CH}_3 + \text{HBr}$$

(p-Bromoacetanilide - major product)

Step 3: Deprotect (hydrolyze)

$$\text{p-Br-C}_6\text{H}_4\text{-NH-CO-CH}_3 \xrightarrow{\text{H}_3\text{O}^+ \text{ or NaOH}} \text{p-Br-C}_6\text{H}_4\text{-NH}_2 + \text{CH}_3\text{COOH}$$

Final product: p-Bromoaniline

Why this works:

  • Acetyl group reduces reactivity (prevents polysubstitution)
  • Still ortho/para directing (mainly para due to steric factors)
  • Acetyl group easily removed
Problem 6: Mechanism-Based

Q: An organic compound (A) with molecular formula C₇H₉N gives positive carbylamine test. When A reacts with HNO₂, stable diazonium salt (B) is formed. Identify A and B.

Solution:

Analysis:

Clue 1: Positive carbylamine test → Primary amine

Clue 2: Stable diazonium salt → Aromatic primary amine (Aliphatic diazonium salts decompose immediately)

Molecular formula: C₇H₉N

Possible aromatic 1° amines with C₇H₉N:

  • C₆H₅-NH-CH₃ (N-methylaniline) - But this is 2° amine ✗
  • CH₃-C₆H₄-NH₂ (Toluidine) - 1° amine ✓

Compound A: CH₃-C₆H₄-NH₂ (Toluidine - ortho, meta, or para)

Most common: p-Toluidine (4-methylaniline)

Reaction with HNO₂:

$$\text{CH}_3\text{-C}_6\text{H}_4\text{-NH}_2 \xrightarrow{\text{NaNO}_2/\text{HCl}, 0-5°\text{C}} [\text{CH}_3\text{-C}_6\text{H}_4\text{-N}_2^+]\text{Cl}^-$$

Compound B: 4-Methylbenzenediazonium chloride

Verification:

  • C₇H₉N ✓
  • Carbylamine positive (1° amine) ✓
  • Stable diazonium (aromatic) ✓

Quick Revision Box

Property/ReactionKey PointsJEE Formula/Observation
Boiling PointH-bonding dominant1° > 2° > 3° (similar mass)
SolubilityLower amines solubleC₁-C₄ water-soluble
Salt FormationWith acidsR-NH₂ + HCl → R-NH₃⁺Cl⁻
AcylationProtection/deactivation1°, 2° react; 3° no reaction
BenzoylationSchotten-BaumannWith C₆H₅COCl/NaOH
Carbylamine1° amines onlyFoul smell (isocyanide)
With HNO₂Different for each type1° aromatic → stable diazonium
HalogenationAniline too reactiveAcetylate first for mono-substitution
OxidationAniline → black tarEasily oxidized (store carefully)

Decision Tree: Identifying Amines

Given amine, determine type?
├─ Add HNO₂ (NaNO₂/HCl)
│  ├─ Stable diazonium salt → 1° aromatic
│  ├─ N₂ gas evolution → 1° aliphatic
│  ├─ Yellow oily product → 2° amine
│  ├─ Ionic salt (colorless) → 3° aliphatic
│  └─ Green color → 3° aromatic
├─ Carbylamine test (CHCl₃/KOH)
│  ├─ Foul smell → 1° amine
│  └─ No smell → 2° or 3° amine
└─ Hinsberg test (C₆H₅SO₂Cl)
   ├─ Product soluble in KOH → 1° amine
   ├─ Product insoluble in KOH → 2° amine
   └─ No reaction → 3° amine

Connection to Other Topics

Prerequisites:

Related Topics:

Applications:


Summary

Key Takeaways

1. Physical Properties:

Boiling Points:

  • 1° > 2° > 3° (H-bonding effect)
  • Alcohols > Amines > Hydrocarbons
  • H-bonding dominates over molecular mass

Solubility:

  • Lower amines (C₁-C₄) water-soluble
  • All amines soluble as salts

2. Chemical Properties:

Salt Formation:

  • R-NH₂ + HCl → R-NH₃⁺Cl⁻ (water-soluble)

Acylation/Benzoylation:

  • Protects amino group
  • Reduces reactivity
  • 1° and 2° react; 3° doesn’t

3. Identification Tests:

Carbylamine (CHCl₃/KOH):

  • Only 1° amines → Foul smell

Nitrous Acid (HNO₂):

  • 1° aliphatic → Alcohol + N₂
  • 1° aromatic → Stable diazonium salt
  • 2° → Yellow N-nitrosamine
  • 3° aliphatic → Salt
  • 3° aromatic → Green p-nitroso

Hinsberg (C₆H₅SO₂Cl):

  • 1° → Soluble in KOH
  • 2° → Insoluble
  • 3° → No reaction

4. Aromatic Substitution:

Direct halogenation: Polysubstitution (2,4,6-tribromo)

For monosubstitution:

  1. Acetylate (protect)
  2. Halogenate (controlled)
  3. Deacetylate (regenerate)

5. JEE Strategy:

To distinguishUse test
1° from 2°, 3°Carbylamine (foul smell)
1° aliphatic from 1° aromaticHNO₂ (N₂ vs stable salt)
All three typesHinsberg or HNO₂

“Amines show unique behavior based on degree - from boiling points to chemical tests, the number of hydrogens on nitrogen matters!”

Next, dive deep into basicity of amines to understand why different amines have different base strengths!