Diazonium Salts: Preparation and Reactions

Complete guide to diazonium salts - diazotization, Sandmeyer reactions, Gattermann reactions, and synthetic applications for JEE

The Hook: The Gateway to Azo Dyes and Medicines

Connect: Real Life → Chemistry

Azo dyes - the most widely used synthetic dyes in textiles, food, and cosmetics - are all prepared through diazonium salts!

Real-world applications:

  • Sunset Yellow (food coloring): Made via diazonium chemistry
  • Methyl Orange (pH indicator): Diazonium coupling product
  • Prontosil (first antibiotic drug, 1932): Azo compound from diazonium salt
  • Congo Red (biological stain): Used in medical diagnostics

The synthetic power: Diazonium salts are like molecular transformers - they allow us to replace the -NH₂ group in aniline with almost any functional group:

$$\text{C}_6\text{H}_5\text{-NH}_2 \xrightarrow{\text{via diazonium}} \text{C}_6\text{H}_5\text{-X}$$

Where X = -F, -Cl, -Br, -I, -CN, -OH, -H, etc.

JEE Question: Why are aliphatic diazonium salts unstable but aromatic ones stable?


The Core Concept

What are Diazonium Salts?

Diazonium salts contain the -N₂⁺ (diazonium) group attached to an aryl or alkyl group.

General formula: R-N₂⁺X⁻ or Ar-N₂⁺X⁻

Structure:

$$\text{R-N≡N}^+ \text{X}^-$$

Key features:

  • Nitrogen-nitrogen triple bond
  • Positive charge on terminal nitrogen
  • Counter ion (usually Cl⁻, HSO₄⁻, BF₄⁻)
JEE Weightage
Diazonium Salts: 4-5 questions in JEE Main, 2-3 in JEE Advanced High-yield topics: Diazotization, Sandmeyer reaction, conversion to different functional groups, azo coupling

Preparation: Diazotization

The Diazotization Reaction

Best for: Aromatic primary amines ONLY

General Reaction:

$$\boxed{\text{Ar-NH}_2 + \text{NaNO}_2 + 2\text{HCl} \xrightarrow{0-5°\text{C}} [\text{Ar-N}_2^+]\text{Cl}^- + \text{NaCl} + 2\text{H}_2\text{O}}$$

Conditions:

  1. Temperature: 0-5°C (ice-cold)
  2. Acid: HCl or H₂SO₄
  3. Reagent: Sodium nitrite (NaNO₂)

Mechanism of Diazotization

Step 1: Generation of nitrous acid

$$\text{NaNO}_2 + \text{HCl} \rightarrow \text{HNO}_2 + \text{NaCl}$$

Step 2: Formation of nitrosonium ion (electrophile)

$$\text{HNO}_2 + \text{H}^+ \rightarrow \text{H}_2\text{O-N=O}^+ \rightarrow \text{H}_2\text{O} + \text{N≡O}^+$$

(Nitrosonium ion: NO⁺)

Step 3: Electrophilic attack on amine

$$\text{C}_6\text{H}_5\text{-NH}_2 + \text{NO}^+ \rightarrow \text{C}_6\text{H}_5\text{-NH-N=O}^+ \text{(N-nitrosoanilinium ion)}$$

Step 4: Deprotonation

$$\text{C}_6\text{H}_5\text{-NH-N=O}^+ \xrightarrow{-\text{H}^+} \text{C}_6\text{H}_5\text{-N=N-OH}$$

Step 5: Tautomerization

$$\text{C}_6\text{H}_5\text{-N=N-OH} \rightarrow \text{C}_6\text{H}_5\text{-NH-N=O}$$

Step 6: Protonation and dehydration

$$\text{C}_6\text{H}_5\text{-N=N-OH} \xrightarrow{+\text{H}^+, -\text{H}_2\text{O}} [\text{C}_6\text{H}_5\text{-N≡N}^+]\text{Cl}^-$$

Final product: Benzenediazonium chloride

Why Temperature Control is Critical

Temperature must be 0-5°C

If temperature > 10°C:

  • Diazonium salt decomposes
  • Forms phenol + nitrogen gas $$[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- \rightarrow \text{C}_6\text{H}_5\text{-OH} + \text{N}_2↑ + \text{HCl}$$

Why stable at low temperature?

  • At 0-5°C, decomposition is slow (kinetic stability)
  • Can be used immediately for further reactions
  • Storage: Use immediately or keep cold

JEE Note: Diazonium salts are never isolated - used in situ (in the same reaction mixture)

Examples of Diazotization

Example 1: Benzenediazonium chloride

$$\text{C}_6\text{H}_5\text{-NH}_2 + \text{NaNO}_2 + 2\text{HCl} \xrightarrow{0-5°\text{C}} [\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- + \text{NaCl} + 2\text{H}_2\text{O}$$

Example 2: p-Toluenediazonium chloride

$$\text{p-CH}_3\text{-C}_6\text{H}_4\text{-NH}_2 \xrightarrow{\text{NaNO}_2/\text{HCl}, 0-5°\text{C}} [\text{p-CH}_3\text{-C}_6\text{H}_4\text{-N}_2^+]\text{Cl}^-$$

Example 3: With H₂SO₄

$$\text{C}_6\text{H}_5\text{-NH}_2 + \text{NaNO}_2 + \text{H}_2\text{SO}_4 \xrightarrow{0-5°\text{C}} [\text{C}_6\text{H}_5\text{-N}_2^+]\text{HSO}_4^-$$

Stability of Diazonium Salts

Aromatic Diazonium Salts

Stable at 0-5°C (can be used for further reactions)

Why stable?

  1. Resonance stabilization with benzene ring
  2. Electron-withdrawing effect of N₂⁺ delocalized

Resonance:

  N≡N⁺              N=N⁺               N=N⁺
   |                 ||                 ||
   ⟨⟩      ←→       ⟨⟩⁺      ←→       ⟨⟩⁺

Positive charge partially delocalized → more stable

Interactive Demo: Visualize Diazonium Chemistry

See the formation and reactions of diazonium salts step-by-step.

Aliphatic Diazonium Salts

Unstable even at 0°C (decompose immediately)

Why unstable?

  1. No resonance stabilization (no aromatic ring)
  2. Positive charge localized on nitrogen
  3. Extremely unstable

Decomposition:

$$\text{R-N}_2^+\text{Cl}^- \rightarrow \text{R}^+ + \text{N}_2 + \text{Cl}^-$$

(Carbocation, very reactive)

Further reaction:

$$\text{R}^+ + \text{H}_2\text{O} \rightarrow \text{R-OH} + \text{H}^+$$
JEE Trap: Aliphatic vs Aromatic

Question type: “What happens when ethylamine reacts with NaNO₂/HCl?”

Wrong answer: “Forms ethyldiazonium chloride (stable)”

Correct answer:

  1. Forms ethyldiazonium chloride (momentarily)
  2. Immediately decomposes to ethanol + N₂
$$\text{C}_2\text{H}_5\text{NH}_2 \xrightarrow{\text{NaNO}_2/\text{HCl}} [\text{C}_2\text{H}_5\text{-N}_2^+] \rightarrow \text{C}_2\text{H}_5\text{OH} + \text{N}_2↑$$

Key: Only aromatic diazonium salts are stable enough for synthetic use!

Related: Properties of amines


Reactions of Diazonium Salts

graph TD
    A[Diazonium Salt] --> B[Replacement by Halogen]
    A --> C[Replacement by CN]
    A --> D[Replacement by OH]
    A --> E[Replacement by H]
    A --> F[Coupling Reactions]
    B --> B1[Sandmeyer Cl, Br]
    B --> B2[Gattermann Cl, Br]
    B --> B3[Balz-Schiemann F]
    C --> C1[Sandmeyer CN]
    D --> D1[Hydrolysis]
    E --> E1[Reduction]
    F --> F1[Azo Dyes]

Type 1: Sandmeyer Reactions

Named after: Swiss chemist Traugott Sandmeyer (1884)

Catalyst: Cu₂X₂ (cuprous salts) or CuX

General Reaction:

$$\boxed{[\text{Ar-N}_2^+]\text{X}^- \xrightarrow{\text{Cu}_2\text{X}_2 \text{ or CuX}} \text{Ar-X} + \text{N}_2↑}$$

Sandmeyer Reaction: Chlorination

Reagent: CuCl or Cu₂Cl₂

$$[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- \xrightarrow{\text{CuCl}} \text{C}_6\text{H}_5\text{-Cl} + \text{N}_2↑$$

Product: Chlorobenzene

Example:

$$[\text{p-CH}_3\text{-C}_6\text{H}_4\text{-N}_2^+]\text{Cl}^- \xrightarrow{\text{CuCl}} \text{p-CH}_3\text{-C}_6\text{H}_4\text{-Cl}$$

(p-Chlorotoluene)

Sandmeyer Reaction: Bromination

Reagent: CuBr or Cu₂Br₂

$$[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- \xrightarrow{\text{CuBr}} \text{C}_6\text{H}_5\text{-Br} + \text{N}_2↑$$

Product: Bromobenzene

Sandmeyer Reaction: Cyanation

Reagent: CuCN (cuprous cyanide)

$$[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- \xrightarrow{\text{CuCN}} \text{C}_6\text{H}_5\text{-CN} + \text{N}_2↑$$

Product: Benzonitrile

Importance: -CN can be converted to -COOH or -CH₂NH₂

Further reactions:

$$\text{C}_6\text{H}_5\text{-CN} \xrightarrow{\text{H}_3\text{O}^+} \text{C}_6\text{H}_5\text{-COOH}$$

(Benzoic acid)

$$\text{C}_6\text{H}_5\text{-CN} \xrightarrow{\text{LiAlH}_4} \text{C}_6\text{H}_5\text{-CH}_2\text{-NH}_2$$

(Benzylamine)

Memory Trick: Sandmeyer Reactions

“Sandmeyer Substitutes with Copper Catalysts”

Sandmeyer reactions:

  • Ar-N₂⁺ → Ar-Cl (CuCl)
  • Ar-N₂⁺ → Ar-Br (CuBr)
  • Ar-N₂⁺ → Ar-CN (CuCN)

All require cuprous (Cu⁺) salts!

JEE Pattern: Questions often ask “How to convert aniline to chlorobenzene?” Answer: Aniline → Diazonium salt → Sandmeyer (CuCl) → Chlorobenzene


Type 2: Gattermann Reactions

Named after: German chemist Ludwig Gattermann (1890)

Difference from Sandmeyer: Uses Cu powder + HX instead of CuX

General Reaction:

$$\boxed{[\text{Ar-N}_2^+]\text{X}^- \xrightarrow{\text{Cu + HX}} \text{Ar-X} + \text{N}_2↑}$$

Gattermann Reaction: Chlorination

Reagent: Cu + HCl

$$[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- \xrightarrow{\text{Cu + HCl}} \text{C}_6\text{H}_5\text{-Cl} + \text{N}_2↑$$

Product: Chlorobenzene

Gattermann Reaction: Bromination

Reagent: Cu + HBr

$$[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- \xrightarrow{\text{Cu + HBr}} \text{C}_6\text{H}_5\text{-Br} + \text{N}_2↑$$

Product: Bromobenzene

Sandmeyer vs Gattermann

Comparison:

FeatureSandmeyerGattermann
ReagentCuCl, CuBr, CuCNCu + HCl, Cu + HBr
ProductsAr-Cl, Ar-Br, Ar-CNAr-Cl, Ar-Br (no CN)
ConditionCuprous saltCopper powder + acid
ScopeWider (includes CN)Limited (Cl, Br only)

JEE Note: For -CN, only Sandmeyer works (CuCN)!

Both give same products for Cl/Br, just different catalysts


Type 3: Balz-Schiemann Reaction (Fluorination)

For: Introducing fluorine (F) into aromatic ring

Reagent: Fluoroboric acid (HBF₄)

Steps:

Step 1: Form diazonium fluoroborate

$$[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- + \text{HBF}_4 \rightarrow [\text{C}_6\text{H}_5\text{-N}_2^+]\text{BF}_4^- + \text{HCl}$$

Step 2: Dry and heat

$$[\text{C}_6\text{H}_5\text{-N}_2^+]\text{BF}_4^- \xrightarrow{\Delta} \text{C}_6\text{H}_5\text{-F} + \text{N}_2↑ + \text{BF}_3$$

Product: Fluorobenzene

Special features:

  • Diazonium fluoroborate is solid (can be isolated)
  • More stable than diazonium chloride
  • Heating causes decomposition to fluorobenzene
Why Different Method for Fluorine?

Q: Why can’t we use CuF for fluorination (like Sandmeyer)?

Answer:

  • CuF is unstable and difficult to prepare
  • Sandmeyer/Gattermann don’t work for F
  • Balz-Schiemann is only practical method for Ar-F

JEE Memory:

  • For Cl, Br: Sandmeyer or Gattermann
  • For CN: Only Sandmeyer (CuCN)
  • For F: Only Balz-Schiemann (HBF₄)

“Fluorine is Fancy - needs Balz-Schiemann!”


Type 4: Replacement by Iodine

Reagent: Potassium iodide (KI)

No catalyst needed!

$$\boxed{[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- + \text{KI} \rightarrow \text{C}_6\text{H}_5\text{-I} + \text{N}_2↑ + \text{KCl}}$$

Product: Iodobenzene

Why no catalyst?

  • I⁻ is a good nucleophile
  • Direct substitution occurs
  • No need for copper catalysts

Comparison:

HalogenReagentMethod
FHBF₄, heatBalz-Schiemann
ClCuCl or Cu/HClSandmeyer/Gattermann
BrCuBr or Cu/HBrSandmeyer/Gattermann
IKI (no catalyst)Direct substitution

Type 5: Replacement by Hydroxyl Group (Hydrolysis)

Reagent: Water (warm) or dilute acid

$$\boxed{[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- \xrightarrow{\text{H}_2\text{O, warm}} \text{C}_6\text{H}_5\text{-OH} + \text{N}_2↑ + \text{HCl}}$$

Product: Phenol

Conditions:

  • Warm the diazonium salt solution
  • Or add dilute H₂SO₄ and heat

Example:

$$[\text{p-CH}_3\text{-C}_6\text{H}_4\text{-N}_2^+]\text{Cl}^- \xrightarrow{\text{H}_2\text{O, warm}} \text{p-CH}_3\text{-C}_6\text{H}_4\text{-OH}$$

(p-Cresol)

Importance: One of the best methods to prepare phenols!

Alternate pathway:

$$\text{Aniline} \rightarrow \text{Diazonium salt} \rightarrow \text{Phenol}$$
JEE Application: Phenol Synthesis

Q: How to convert benzene to phenol?

Method 1 (via diazonium):

  1. Benzene → Nitrobenzene (HNO₃/H₂SO₄)
  2. Nitrobenzene → Aniline (Sn/HCl)
  3. Aniline → Diazonium salt (NaNO₂/HCl, 0-5°C)
  4. Diazonium salt → Phenol (H₂O, warm)

Method 2 (industrial):

  • Benzene → Cumene → Phenol + Acetone (Cumene process)

JEE prefers: Diazonium route (shows reaction sequence)

Related: Oxygen compounds


Type 6: Replacement by Hydrogen (Reduction)

Reagent: Hypophosphorous acid (H₃PO₂) or C₂H₅OH/Zn dust

$$\boxed{[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- \xrightarrow{\text{H}_3\text{PO}_2} \text{C}_6\text{H}_6 + \text{N}_2↑}$$

Product: Benzene

Also works:

$$[\text{C}_6\text{H}_5\text{-N}_2^+]\text{Cl}^- \xrightarrow{\text{C}_2\text{H}_5\text{OH/Zn}} \text{C}_6\text{H}_6 + \text{N}_2↑$$

Application: Deamination

This reaction removes the amino group!

Example:

$$\text{Aniline} \rightarrow \text{Diazonium salt} \rightarrow \text{Benzene}$$

Uses:

  1. Remove unwanted -NH₂ after directing a substitution
  2. Prepare hydrocarbons from amines
JEE Strategy: Using NH₂ as Directing Group

Problem: Prepare 1,3-dibromobenzene from benzene

Cannot do directly: Br is ortho/para directing, gives 1,2- and 1,4-dibromobenzene

Strategy: Use -NH₂ as meta-directing group (as -NH₃⁺)

Step 1: Benzene → Nitrobenzene → Aniline

Step 2: Aniline + Br₂ → 2,4,6-Tribromoaniline (ortho/para directing)

Wait, that’s not what we want!

Better strategy:

Use -NH₂ after protonation as -NH₃⁺ (meta-directing):

Actually, this is complex. Better approach:

Step 1: Introduce -NO₂ (meta-directing) Step 2: Brominate → m-bromonitrobenzene Step 3: Reduce NO₂ → m-bromoaniline Step 4: Diazotize and brominate → 3,5-dibromoaniline Step 5: Diazotize and reduce → 1,3-dibromobenzene

Key: Diazonium salt helps remove -NH₂ after using it for directing!

Related: Electrophilic aromatic substitution


Type 7: Coupling Reactions (Azo Compounds)

Most important for dyes!

General Reaction:

$$\boxed{[\text{Ar-N}_2^+]\text{Cl}^- + \text{Ar'-OH or Ar'-NR}_2 \xrightarrow{\text{pH 8-10}} \text{Ar-N=N-Ar'}}$$

Product: Azo compound (bright colored dyes)

Reaction partners:

  1. Phenols (in alkaline medium)
  2. Aromatic amines (in weakly acidic medium)

Details in: Coupling Reactions


Summary of Replacements

GroupReagentProductMethod
-FHBF₄, heatAr-FBalz-Schiemann
-ClCuCl or Cu/HClAr-ClSandmeyer/Gattermann
-BrCuBr or Cu/HBrAr-BrSandmeyer/Gattermann
-IKIAr-IDirect substitution
-CNCuCNAr-CNSandmeyer only
-OHH₂O, warmAr-OHHydrolysis
-HH₃PO₂ or C₂H₅OH/ZnAr-HReduction
-N=N-Ar’Ar’-OH or Ar’-NR₂Azo dyeCoupling
Memory Trick: All Diazonium Reactions

“Fancy Colored Brainy Iodine Chemistry Helps Create Beautiful Dyes”

  • Fancy → F (Balz-Schiemann)
  • Colored → Cl (Sandmeyer/Gattermann)
  • Brainy → Br (Sandmeyer/Gattermann)
  • Iodine → I (KI)
  • Chemistry → CN (Sandmeyer)
  • Helps → H (H₃PO₂ reduction)
  • Create → Coupling
  • Beautiful → (also for Br)
  • Dyes → -OH (hydrolysis to phenol)

JEE Strategy: Know all 8 transformations by heart!


Synthetic Importance of Diazonium Salts

Why Diazonium Salts are Important

1. Convert -NH₂ to various groups:

  • Cannot directly substitute -NH₂ in aniline
  • Must go via diazonium salt
  • Allows access to many derivatives

2. Introduce groups that can’t be added directly:

Example: Preparing fluorobenzene

  • Cannot do: C₆H₆ + F₂ (too reactive, violent)
  • Must use: C₆H₆ → C₆H₅NH₂ → C₆H₅N₂⁺ → C₆H₅F

3. Prepare phenols easily:

  • Direct hydroxylation of benzene is difficult
  • Via diazonium: C₆H₆ → C₆H₅NH₂ → C₆H₅N₂⁺ → C₆H₅OH

4. Form azo dyes:

  • Coupling reactions give colored compounds
  • Textile dyes, food colors, indicators

Common Synthetic Transformations

Benzene → Chlorobenzene:

$$\text{C}_6\text{H}_6 \xrightarrow{\text{HNO}_3/\text{H}_2\text{SO}_4} \text{C}_6\text{H}_5\text{NO}_2 \xrightarrow{\text{Sn/HCl}} \text{C}_6\text{H}_5\text{NH}_2$$ $$\xrightarrow{\text{NaNO}_2/\text{HCl}, 0-5°\text{C}} [\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^- \xrightarrow{\text{CuCl}} \text{C}_6\text{H}_5\text{Cl}$$

Benzene → Phenol:

$$\text{C}_6\text{H}_6 \rightarrow \text{C}_6\text{H}_5\text{NO}_2 \rightarrow \text{C}_6\text{H}_5\text{NH}_2 \rightarrow [\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^- \xrightarrow{\text{H}_2\text{O, warm}} \text{C}_6\text{H}_5\text{OH}$$

Aniline → Benzonitrile → Benzoic acid:

$$\text{C}_6\text{H}_5\text{NH}_2 \rightarrow [\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^- \xrightarrow{\text{CuCN}} \text{C}_6\text{H}_5\text{CN} \xrightarrow{\text{H}_3\text{O}^+} \text{C}_6\text{H}_5\text{COOH}$$

Common Mistakes to Avoid

Mistake #1: Temperature Control

Wrong: “Diazonium salts are stable at room temperature”

Correct: “Aromatic diazonium salts are stable only at 0-5°C”

If temp > 10°C:

$$[\text{Ar-N}_2^+]\text{Cl}^- \rightarrow \text{Ar-OH} + \text{N}_2↑$$

JEE Trap: Questions may not mention temperature - always assume 0-5°C for diazotization!

Mistake #2: Aliphatic Diazonium Salts

Wrong: “All diazonium salts are stable at 0-5°C”

Correct: “Only AROMATIC diazonium salts are stable”

Aliphatic diazonium salts:

  • Decompose immediately even at 0°C
  • Cannot be used for further reactions
  • Give alcohol + N₂

JEE Note: Diazotization is synthetically useful only for aromatic amines!

Mistake #3: Wrong Reagent Choice

Wrong: “Use CuCN for chlorination”

Correct: “Use CuCl for Cl, CuBr for Br, CuCN for CN”

Also wrong: “Use Sandmeyer for fluorination”

Correct: “Fluorination requires Balz-Schiemann (HBF₄)”

Summary:

  • Cl, Br, CN → Sandmeyer (CuX)
  • F → Balz-Schiemann (HBF₄)
  • I → KI (no catalyst)

Practice Problems

Level 1: Foundation (NCERT)

Problem 1: Basic Conversion

Q: How will you convert aniline to chlorobenzene?

Solution:

Step 1: Diazotization

$$\text{C}_6\text{H}_5\text{NH}_2 + \text{NaNO}_2 + 2\text{HCl} \xrightarrow{0-5°\text{C}} [\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^- + \text{NaCl} + 2\text{H}_2\text{O}$$

Step 2: Sandmeyer reaction

$$[\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^- \xrightarrow{\text{CuCl}} \text{C}_6\text{H}_5\text{Cl} + \text{N}_2↑$$

Final product: Chlorobenzene

Alternative for step 2: Gattermann reaction (Cu + HCl)

Problem 2: Phenol Preparation

Q: Write the reaction for conversion of benzenediazonium chloride to phenol.

Solution:

$$[\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^- \xrightarrow{\text{H}_2\text{O, warm}} \text{C}_6\text{H}_5\text{OH} + \text{N}_2↑ + \text{HCl}$$

Conditions:

  • Warm water (or dilute H₂SO₄)
  • Temperature > 10°C

Product: Phenol

Observation: Nitrogen gas evolution (effervescence)

JEE Note: This is hydrolysis of diazonium salt

Level 2: JEE Main

Problem 3: Reagent Identification

Q: What reagent is used to convert benzenediazonium chloride to: (a) Fluorobenzene (b) Benzonitrile (c) Iodobenzene

Solution:

(a) Fluorobenzene:

  • Reagent: HBF₄, then heat
  • Method: Balz-Schiemann reaction $$[\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^- \xrightarrow{\text{HBF}_4} [\text{C}_6\text{H}_5\text{N}_2^+]\text{BF}_4^- \xrightarrow{\Delta} \text{C}_6\text{H}_5\text{F}$$

(b) Benzonitrile:

  • Reagent: CuCN
  • Method: Sandmeyer reaction $$[\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^- \xrightarrow{\text{CuCN}} \text{C}_6\text{H}_5\text{CN} + \text{N}_2↑$$

(c) Iodobenzene:

  • Reagent: KI (potassium iodide)
  • Method: Direct substitution (no catalyst) $$[\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^- \xrightarrow{\text{KI}} \text{C}_6\text{H}_5\text{I} + \text{N}_2↑$$

JEE Memory: F needs fancy method (Balz-Schiemann), I is independent (no catalyst)

Problem 4: Multi-step Synthesis

Q: How will you prepare benzoic acid from aniline?

Solution:

Retrosynthetic analysis: C₆H₅COOH ← C₆H₅CN ← C₆H₅N₂⁺Cl⁻ ← C₆H₅NH₂

Forward synthesis:

Step 1: Diazotization

$$\text{C}_6\text{H}_5\text{NH}_2 \xrightarrow{\text{NaNO}_2/\text{HCl}, 0-5°\text{C}} [\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^-$$

Step 2: Sandmeyer cyanation

$$[\text{C}_6\text{H}_5\text{N}_2^+]\text{Cl}^- \xrightarrow{\text{CuCN}} \text{C}_6\text{H}_5\text{CN} + \text{N}_2↑$$

Step 3: Hydrolysis of nitrile

$$\text{C}_6\text{H}_5\text{CN} \xrightarrow{\text{H}_3\text{O}^+, \Delta} \text{C}_6\text{H}_5\text{COOH}$$

Final product: Benzoic acid

Key: Diazonium → CN → COOH (useful chain extension)

Level 3: JEE Advanced

Problem 5: Complete Synthesis

Q: Starting from benzene, how will you prepare: (a) m-Dibromobenzene (b) p-Bromoaniline

Solution:

(a) m-Dibromobenzene:

Strategy: Use -NO₂ as meta-directing group

Step 1: Nitration

$$\text{C}_6\text{H}_6 \xrightarrow{\text{HNO}_3/\text{H}_2\text{SO}_4} \text{C}_6\text{H}_5\text{NO}_2$$

Step 2: Bromination (meta-directed)

$$\text{C}_6\text{H}_5\text{NO}_2 \xrightarrow{\text{Br}_2/\text{Fe}} \text{m-BrC}_6\text{H}_4\text{NO}_2$$

Step 3: Reduce to amine

$$\text{m-BrC}_6\text{H}_4\text{NO}_2 \xrightarrow{\text{Sn/HCl}} \text{m-BrC}_6\text{H}_4\text{NH}_2$$

Step 4: Diazotize and brominate

$$\text{m-BrC}_6\text{H}_4\text{NH}_2 \xrightarrow{\text{NaNO}_2/\text{HCl}} [\text{m-BrC}_6\text{H}_4\text{N}_2^+]\text{Cl}^-$$ $$\xrightarrow{\text{CuBr}} \text{1,3-dibromobenzene}$$

(b) p-Bromoaniline:

Strategy: Protect NH₂, brominate, deprotect

Step 1: Benzene → Aniline (via nitrobenzene)

Step 2: Acetylation (protect)

$$\text{C}_6\text{H}_5\text{NH}_2 \xrightarrow{(\text{CH}_3\text{CO})_2\text{O}} \text{C}_6\text{H}_5\text{NHCOCH}_3$$

Step 3: Bromination (para-directed)

$$\text{C}_6\text{H}_5\text{NHCOCH}_3 \xrightarrow{\text{Br}_2} \text{p-BrC}_6\text{H}_4\text{NHCOCH}_3$$

Step 4: Deprotection (hydrolysis)

$$\text{p-BrC}_6\text{H}_4\text{NHCOCH}_3 \xrightarrow{\text{H}_3\text{O}^+} \text{p-BrC}_6\text{H}_4\text{NH}_2$$

Product: p-Bromoaniline

JEE Insight: Different strategies for meta vs para substitution!

Related: Aromatic substitution

Problem 6: Mechanism and Stability

Q: Explain why aromatic diazonium salts are more stable than aliphatic diazonium salts.

Solution:

Aromatic diazonium salts (e.g., C₆H₅N₂⁺Cl⁻):

Stability factors:

1. Resonance stabilization:

  N≡N⁺              N=N⁺               N=N⁺
   |                 ||                 ||
   ⟨⟩      ←→       ⟨⟩⁺      ←→       ⟨⟩⁺

Positive charge delocalized into benzene ring → stabilized

2. Electron-withdrawing effect:

  • N₂⁺ group withdraws electrons from ring
  • Ring stabilizes positive charge through resonance

Aliphatic diazonium salts (e.g., CH₃N₂⁺Cl⁻):

Instability factors:

1. No resonance:

  • No aromatic ring to delocalize charge
  • Positive charge localized on terminal N

2. Rapid decomposition:

$$\text{R-N}_2^+ \rightarrow \text{R}^+ + \text{N}_2$$

Carbocation forms → very unstable

3. Strong driving force:

  • Formation of N₂ gas (very stable, triple bond)
  • Large entropy increase (gas evolution)
  • Thermodynamically favorable

Conclusion:

FeatureAromaticAliphatic
ResonanceYes (stabilizing)No
Stability at 0-5°CStableUnstable
Synthetic useYesNo
DecompositionSlow (at low temp)Instantaneous

JEE Key: Only aromatic diazonium salts are synthetically useful!


Quick Revision Box

TransformationReagentMethodProduct
Ar-NH₂ → Ar-N₂⁺NaNO₂/HCl, 0-5°CDiazotizationDiazonium salt
Ar-N₂⁺ → Ar-FHBF₄, heatBalz-SchiemannAryl fluoride
Ar-N₂⁺ → Ar-ClCuCl or Cu/HClSandmeyer/GattermannAryl chloride
Ar-N₂⁺ → Ar-BrCuBr or Cu/HBrSandmeyer/GattermannAryl bromide
Ar-N₂⁺ → Ar-IKIDirect substitutionAryl iodide
Ar-N₂⁺ → Ar-CNCuCNSandmeyerAryl cyanide
Ar-N₂⁺ → Ar-OHH₂O, warmHydrolysisPhenol
Ar-N₂⁺ → Ar-HH₃PO₂ReductionArene

Connection to Other Topics

Prerequisites:

Related Topics:

Applications:

  • Dye synthesis
  • Pharmaceutical intermediates
  • Aromatic substitution control

Summary

Key Takeaways

1. Preparation (Diazotization):

Reaction:

$$\text{Ar-NH}_2 + \text{NaNO}_2 + 2\text{HCl} \xrightarrow{0-5°\text{C}} [\text{Ar-N}_2^+]\text{Cl}^- + \text{NaCl} + 2\text{H}_2\text{O}$$

Critical conditions:

  • Temperature: 0-5°C (ice-cold)
  • Only for aromatic primary amines
  • Never isolate - use immediately

2. Stability:

Aromatic: Stable at 0-5°C (resonance stabilization) Aliphatic: Unstable even at 0°C (no resonance)

3. Replacement Reactions:

ProductReagentMethod
Ar-FHBF₄, ΔBalz-Schiemann
Ar-ClCuClSandmeyer
Ar-BrCuBrSandmeyer
Ar-IKIDirect
Ar-CNCuCNSandmeyer
Ar-OHH₂O, warmHydrolysis
Ar-HH₃PO₂Reduction

4. Sandmeyer vs Gattermann:

Sandmeyer: CuCl, CuBr, CuCN (wider scope) Gattermann: Cu/HCl, Cu/HBr (Cl, Br only)

5. Synthetic Importance:

  • Convert -NH₂ to any group
  • Prepare phenols easily
  • Introduce halogens (especially F)
  • Form azo dyes (coupling)

6. JEE Strategy:

✓ Always mention 0-5°C for diazotization ✓ For F: Use Balz-Schiemann (only method) ✓ For CN: Use Sandmeyer with CuCN (not Gattermann) ✓ For I: KI works directly (no catalyst) ✓ Remember: Aromatic only for stable salts

“Diazonium salts are the Swiss Army knife of organic synthesis - one intermediate, countless products!”

Next, explore coupling reactions to understand how diazonium salts create the vibrant world of azo dyes!