Real-Life Connection: From Breath to Batteries
Every breath you take is 21% oxygen - the element that keeps you alive! Ozone (O₃) high in the atmosphere protects us from UV rays, but at ground level it’s a pollutant. Sulfur makes matches ignite, vulcanizes rubber for tires, and powers lead-acid car batteries as sulfuric acid. From the bleaching powder that purifies water to the SO₂ that preserves dried fruits, Group 16 elements are everywhere!
Group 16 Elements Overview
Members: Oxygen (O), Sulfur (S), Selenium (Se), Tellurium (Te), Polonium (Po)
Common Names: Chalcogens (ore-forming elements, from Greek “chalcos” = copper)
Electronic Configuration Pattern
- General configuration: ns² np⁴
- Oxygen: [He] 2s² 2p⁴
- Sulfur: [Ne] 3s² 3p⁴
- Selenium: [Ar] 3d¹⁰ 4s² 4p⁴
Memory Trick - “Oh! So Sexy Teacher, Please!”: O, S, Se, Te, Po
Key Trends Down the Group
| Property | Trend | Explanation |
|---|---|---|
| Atomic radius | Increases | Additional shells |
| Ionization energy | Decreases | Shielding increases |
| Electronegativity | Decreases | O (3.5) to Po (1.8) |
| Electron gain enthalpy | Decreases | O to S increases (exception), then decreases |
| Metallic character | Increases | O, S (non-metals), Se, Te (metalloids), Po (metal) |
| Oxidation states | -2, +2, +4, +6 | -2 common for O; +4, +6 for S |
| Acidic character of oxides | Decreases | H₂O < H₂S < H₂Se < H₂Te |
Memory Trick for Oxidation States: “Negative Two, Plus Two-Four-Six” - Group 16 shows -2, +2, +4, +6
Interactive Demo: Visualize Group 16 in the Periodic Table
Explore the oxygen family (chalcogens) and their position in the periodic table.
Exception Alert: Electron gain enthalpy of S is more negative than O (due to small size of O, electron-electron repulsion in small 2p orbital)
Dioxygen (O₂) - The Life Supporter
Occurrence
- 20.95% of atmosphere by volume
- 46% of Earth’s crust by mass (in silicates, oxides)
- 89% of water by mass
- Most abundant element in Earth’s crust
Preparation
Laboratory (Thermal decomposition):
2KClO₃ --MnO₂--> 2KCl + 3O₂ (heat)
2KMnO₄ --heat--> K₂MnO₄ + MnO₂ + O₂
2H₂O₂ --MnO₂--> 2H₂O + O₂
Industrial:
Fractional distillation of liquid air
(b.p. of O₂ = -183°C, N₂ = -196°C)
O₂ distills first (higher b.p.)
Memory Trick: “KKKH = Kill KClO₃, KMnO₄ & H₂O₂” - All three decompose to give O₂
Properties of Oxygen
Physical:
- Colorless, odorless gas
- Paramagnetic (two unpaired electrons in π* orbitals)
- Slightly soluble in water (supports aquatic life)
- Liquid O₂ is pale blue and magnetic
Chemical (strong oxidizing agent):
- With metals (forms oxides):
4Na + O₂ → 2Na₂O (oxide)
2Na + O₂ → Na₂O₂ (peroxide, excess O₂)
K + O₂ → KO₂ (superoxide, excess O₂)
2Mg + O₂ → 2MgO
3Fe + 2O₂ → Fe₃O₄ (at high temp)
Oxide Formation Trend:
- Small metals (Li, Be, Mg, Al) → Normal oxides (M₂O)
- Medium metals (Na) → Peroxides (M₂O₂)
- Large metals (K, Rb, Cs) → Superoxides (MO₂)
Memory Trick: “Small, Medium, Large → Oxide, Peroxide, Superoxide”
- With non-metals:
C + O₂ → CO₂
S + O₂ → SO₂
4P + 5O₂ → P₄O₁₀
N₂ + O₂ → 2NO (at high temp/lightning)
- With compounds:
2H₂S + 3O₂ → 2SO₂ + 2H₂O
2CO + O₂ → 2CO₂
CH₄ + 2O₂ → CO₂ + 2H₂O (combustion)
Types of Oxides
| Type | Formula | Example | Reaction with water |
|---|---|---|---|
| Normal oxide | M₂O | Na₂O | Na₂O + H₂O → 2NaOH |
| Peroxide | M₂O₂ | Na₂O₂ | Na₂O₂ + 2H₂O → 2NaOH + H₂O₂ |
| Superoxide | MO₂ | KO₂ | 2KO₂ + 2H₂O → 2KOH + H₂O₂ + O₂ |
Oxidation states:
- Normal oxide: O = -2
- Peroxide: O = -1
- Superoxide: O = -1/2
Ozone (O₃) - The Protector
Preparation
Laboratory (Silent electric discharge):
3O₂ --silent electric discharge--> 2O₃ (ΔH = +142 kJ/mol, endothermic)
In stratosphere (UV radiation):
O₂ --UV--> 2O
O + O₂ → O₃
Memory Trick: “SED = Silent Electric Discharge” for O₃ preparation
Structure of Ozone
Shape: Bent (V-shaped) Bond angle: 117° Hybridization: sp² (central O) Bond length: 128 pm (intermediate between O=O and O-O) Resonance: Two equivalent structures
O⁻
/ \\
O⁺ O ↔ O O⁺
\\ /
O⁻
Formal charges: +1 on central O, -1 on one terminal O
Properties of Ozone
Physical:
- Pale blue gas, pungent smell
- Diamagnetic (all electrons paired)
- More soluble in water than O₂
- Thermally unstable: 2O₃ → 3O₂ (exothermic)
Chemical (powerful oxidizing agent):
- Oxidation of metals:
2Ag + O₃ → Ag₂O + O₂
2Hg + O₃ → 2HgO + O₂ (used to detect O₃)
- Oxidation of non-metals:
PbS + 4O₃ → PbSO₄ + 4O₂ (tarnish removal)
2I⁻ + O₃ + H₂O → I₂ + O₂ + 2OH⁻
- Oxidation of organic compounds:
C₂H₄ + O₃ → C₂H₄O₃ (ozonide, unstable)
C₂H₄O₃ + Zn/H₂O → 2HCHO + ZnO (ozonolysis)
Ozonolysis: Used to determine position of double bonds in alkenes
- Bleaching action:
Coloring matter + O₃ → Oxidized (colorless) + O₂
Permanent bleaching (oxidation, not reversible)
Comparison: Cl₂ + H₂O → HCl + HOCl (reversible bleaching) O₃ directly oxidizes (permanent)
Memory Trick: “O₃ Oxidizes Permanently, Cl₂ Chlorinates Reversibly”
Uses of Ozone
- Water purification (kills bacteria)
- Bleaching agent (oils, waxes, paper)
- Ozonolysis in organic chemistry
- Air purification
- Stratospheric O₃ layer protects from UV radiation
Ozone Layer Depletion
Cause: CFCs (Chlorofluorocarbons) - CCl₂F₂, CFCl₃
Mechanism:
CFCl₃ --UV--> CFCl₂ + Cl•
Cl• + O₃ → ClO• + O₂
ClO• + O → Cl• + O₂
(Cl• acts as catalyst, regenerated)
Result: Ozone hole over Antarctica Solution: Montreal Protocol (1987) - banned CFCs
Sulfur - The Brimstone
Allotropes of Sulfur
1. Rhombic Sulfur (α-S)
Structure: S₈ ring (puckered crown shape) Color: Yellow Stable below: 369 K Density: 2.06 g/cm³ Solubility: Soluble in CS₂
Preparation:
Evaporation of roll sulfur solution in CS₂
2. Monoclinic Sulfur (β-S)
Structure: S₈ ring (different crystal packing) Color: Pale yellow (needle-shaped crystals) Stable between: 369 K - 392 K Density: 1.98 g/cm³ Solubility: Soluble in CS₂
Preparation:
Melting rhombic S and cooling slowly (below 392 K)
Conversion:
Rhombic S ⇌ Monoclinic S (369 K = transition temperature)
(α) (β)
Above 392 K: Monoclinic melts to form yellow liquid (S₈ rings mobile) Above 433 K: Viscosity increases (rings break, form chains) Above 720 K: Viscosity decreases (chains break, S₂ molecules)
Memory Trick: “369 = 3×3×41 = Rhombic to Monoclinic”
Preparation of Sulfur
Occurrence: Native sulfur, H₂S in natural gas, sulfides (FeS₂, PbS), sulfates (CaSO₄)
Extraction:
1. Frasch process (underground sulfur):
Superheated water (at 170°C, 10 atm) melts sulfur
Compressed air brings molten S to surface
99.5% pure sulfur obtained
2. From H₂S (Claus process):
2H₂S + 3O₂ → 2SO₂ + 2H₂O
2H₂S + SO₂ → 3S + 2H₂O
Properties and Reactions of Sulfur
With metals:
Fe + S → FeS
Hg + S → HgS (black, cinnabar when red)
With oxygen:
S + O₂ → SO₂
With halogens:
S + Cl₂ → S₂Cl₂ (chlorine deficient)
S₂Cl₂ + Cl₂ → 2SCl₂
S + 3F₂ → SF₆ (inert gas, excellent insulator)
With acids:
S + 2H₂SO₄(conc) → 3SO₂ + 2H₂O
S + 6HNO₃(conc) → H₂SO₄ + 6NO₂ + 2H₂O
Hydrogen Sulfide (H₂S)
Preparation
Laboratory (Kipp’s apparatus):
FeS + 2HCl → FeCl₂ + H₂S
FeS + H₂SO₄(dil) → FeSO₄ + H₂S
Industrial:
H₂ + S --673K--> H₂S
Memory Trick: “Fool’s gold (FeS₂) produces H₂S with acid”
Properties of H₂S
Physical:
- Colorless gas
- Rotten egg smell
- Poisonous (more toxic than HCN!)
- Soluble in water (weakly acidic)
Structure:
- Bent shape (like H₂O)
- Bond angle: 92° (less than H₂O’s 104.5°)
- Less hydrogen bonding than H₂O (S less electronegative)
Why is H₂S less acidic than H₂O? Actually, H₂S is MORE acidic than H₂O!
- H₂S → H⁺ + HS⁻ (Ka₁ = 10⁻⁷)
- H₂O → H⁺ + OH⁻ (Kw = 10⁻¹⁴)
- Larger S-H bond, easier to break
- Less electronegative S, can release H⁺ more easily
Acidic trends: H₂O < H₂S < H₂Se < H₂Te (acidity increases)
Memory Trick: “Down the group, Acidity DOwn-ward increases” (paradox name!)
Chemical Reactions of H₂S
Acidic nature:
H₂S + 2NaOH → Na₂S + 2H₂O (excess base)
H₂S + NaOH → NaHS + H₂O (limited base)
Reducing agent (S goes from -2 to higher):
H₂S + Cl₂ → 2HCl + S (turbidity)
H₂S + Br₂ → 2HBr + S
2H₂S + SO₂ → 3S + 2H₂O
H₂S + H₂SO₄(conc) → S + SO₂ + 2H₂O
Precipitation reactions (qualitative analysis):
H₂S + Pb(NO₃)₂ → PbS (black ppt) + 2HNO₃
H₂S + CuSO₄ → CuS (black ppt) + H₂SO₄
H₂S + CdCl₂ → CdS (yellow ppt) + 2HCl
H₂S + ZnSO₄ (+ NH₄OH) → ZnS (white ppt) + H₂SO₄
Combustion:
2H₂S + 3O₂ → 2SO₂ + 2H₂O (complete combustion)
2H₂S + O₂ → 2S + 2H₂O (limited O₂)
Oxides of Sulfur
Sulfur Dioxide (SO₂)
Preparation:
Laboratory:
Na₂SO₃ + H₂SO₄(dil) → Na₂SO₄ + H₂O + SO₂
Cu + 2H₂SO₄(conc) → CuSO₄ + 2H₂O + SO₂
Industrial:
S + O₂ → SO₂
4FeS₂ + 11O₂ → 2Fe₂O₃ + 8SO₂ (roasting of pyrites)
Structure:
- Bent shape
- Bond angle: 119°
- sp² hybridized S
- Resonance structures
Properties:
- Colorless gas, pungent smell
- Poisonous, acidic
- Soluble in water
- Reducing and oxidizing agent (amphoteric redox)
Reactions:
- Acidic nature:
SO₂ + H₂O → H₂SO₃ (sulfurous acid)
SO₂ + 2NaOH → Na₂SO₃ + H₂O
SO₂ + NaOH → NaHSO₃ (excess SO₂)
- Oxidizing agent (with strong reducing agents):
SO₂ + 2H₂S → 3S + 2H₂O
- Reducing agent (more common):
SO₂ + 2H₂O + Cl₂ → H₂SO₄ + 2HCl
SO₂ + Br₂ + 2H₂O → H₂SO₄ + 2HBr
2SO₂ + O₂ + 2H₂O → 2H₂SO₄
SO₂ + [O] → SO₃
- Bleaching action (temporary, reduction):
SO₂ + H₂O → H₂SO₃
H₂SO₃ + Coloring matter → Colorless (reduced form)
On exposure to air: Colorless + O₂ → Colored (re-oxidized)
Comparison: O₃ bleaches permanently (oxidation), SO₂ bleaches temporarily (reduction)
Uses:
- H₂SO₄ manufacture (Contact process)
- Bleaching agent (wool, silk, straw)
- Disinfectant, preservative
- Reducing agent
Sulfur Trioxide (SO₃)
Preparation:
2SO₂ + O₂ ⇌ 2SO₃ (Contact process: 450°C, 2 atm, V₂O₅ catalyst)
Structure:
- Planar triangular
- sp² hybridized S (but can expand octet using d-orbitals)
- Three S=O double bonds
- Bond angle: 120°
Forms:
- Gas: Individual SO₃ molecules
- Solid: Polymeric (asbestos-like or ice-like structures)
Properties:
- Colorless gas/liquid
- Highly reactive with water
Reactions:
SO₃ + H₂O → H₂SO₄ (very exothermic, violent)
SO₃ + NaOH → NaHSO₄
SO₃ + 2NaOH → Na₂SO₄ + H₂O
Sulfuric Acid (H₂SO₄) - King of Chemicals
Preparation: Contact Process
Steps:
- Burning of sulfur:
S + O₂ → SO₂
or 4FeS₂ + 11O₂ → 2Fe₂O₃ + 8SO₂
- Oxidation to SO₃ (key step):
2SO₂ + O₂ ⇌ 2SO₃
Conditions: 450°C, 2 atm pressure, V₂O₅ catalyst
- Absorption (not direct with water!):
SO₃ + H₂SO₄(conc, 98%) → H₂S₂O₇ (oleum/fuming H₂SO₄)
H₂S₂O₇ + H₂O → 2H₂SO₄
Why not SO₃ + H₂O directly?
- Too exothermic, violent reaction
- Forms dense mist of H₂SO₄ droplets (difficult to condense)
- Oleum method is safer and efficient
Memory Trick: “Contact = Catalyst Oxidizes, Not Touches Aqua, Create Two sulfuric”
Properties of Sulfuric Acid
Physical:
- Colorless, odorless, oily liquid
- Highly viscous (due to extensive H-bonding)
- Boils at 611 K with decomposition
- Hygroscopic and dehydrating
Structure:
- Tetrahedral around S
- Two S=O and two S-OH bonds
- sp³ hybridized (but uses d-orbitals for π bonding)
Chemical Reactions
1. Acidic nature (dibasic):
H₂SO₄ + NaOH → NaHSO₄ + H₂O
H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O
With metals:
Mg + H₂SO₄(dil) → MgSO₄ + H₂
2. Dehydrating agent (removes H₂O):
C₁₂H₂₂O₁₁ --conc H₂SO₄--> 12C + 11H₂O (sugar to carbon)
HCOOH --conc H₂SO₄--> CO + H₂O
H₂C₂O₄ --conc H₂SO₄--> CO + CO₂ + H₂O
2HNO₃ + H₂SO₄ → 2NO₂⁺ + 2HSO₄⁻ + H₂O (nitration mixture)
3. Oxidizing agent (hot, concentrated):
With metals:
Cu + 2H₂SO₄(conc) --heat--> CuSO₄ + SO₂ + 2H₂O
Zn + 2H₂SO₄(conc) → ZnSO₄ + SO₂ + 2H₂O
3Ag + 2H₂SO₄(conc) → Ag₂SO₄ + SO₂ + 2H₂O
Exception: Cold conc. H₂SO₄ passivates Fe, Al (protective oxide layer)
With non-metals:
C + 2H₂SO₄(conc) → CO₂ + 2SO₂ + 2H₂O
S + 2H₂SO₄(conc) → 3SO₂ + 2H₂O
With compounds:
2HBr + H₂SO₄(conc) → Br₂ + SO₂ + 2H₂O
2HI + H₂SO₄(conc) → I₂ + SO₂ + 2H₂O
H₂S + H₂SO₄(conc) → S + SO₂ + 2H₂O
Why can’t we prepare HBr/HI using conc. H₂SO₄?
- H₂SO₄ oxidizes HBr to Br₂ and HI to I₂
- Only H₃PO₄ (non-oxidizing) can be used
Memory Trick: “CHORD = Can’t Handle Oxidizing Reactants, Dehydrates”
Uses of Sulfuric Acid
- Fertilizers (single largest use)
- Petroleum refining
- Paints and pigments
- Detergents
- Battery acid (car batteries)
- Chemical synthesis
- Metal processing
Comparison: Oxygen vs Sulfur
| Property | Oxygen | Sulfur |
|---|---|---|
| Catenation | O-O weak | S-S stronger (S₈) |
| Multiple bonding | pπ-pπ strong | pπ-pπ weak (size) |
| Oxidation states | -2, -1, -1/2 | -2, +2, +4, +6 |
| Hydride acidity | H₂O (less acidic) | H₂S (more acidic) |
| Hydride b.p. | 100°C (H-bonding) | -60°C (weak) |
| d-orbitals | Absent | Present (expansion) |
| Dioxygen form | O₂ (paramagnetic) | S₈ (diamagnetic) |
| Allotropes | O₂, O₃ | S₈, S₂, polymeric |
Memory Trick: “Oxygen Only does -2, Sulfur Shows Six” - O limited, S shows +6
Common Mistakes to Avoid
Mistake: O₂ is diamagnetic
- Correct: O₂ is paramagnetic (two unpaired electrons in π*)
Mistake: Ozone bleaches by reduction
- Correct: O₃ bleaches by oxidation (permanent), SO₂ by reduction (temporary)
Mistake: H₂S is less acidic than H₂O
- Correct: H₂S is MORE acidic (Ka = 10⁻⁷ vs 10⁻¹⁴)
Mistake: SO₃ + H₂O directly in Contact process
- Correct: SO₃ + H₂SO₄ → H₂S₂O₇, then H₂S₂O₇ + H₂O → 2H₂SO₄
Mistake: Conc. H₂SO₄ can prepare HBr/HI
- Correct: Oxidizes to Br₂/I₂, use H₃PO₄ instead
Mistake: All metals react with conc. H₂SO₄
- Correct: Fe, Al show passivation (cold conc. H₂SO₄)
Mistake: Rhombic and monoclinic S have different formulas
- Correct: Both are S₈, differ only in crystal structure
Practice Problems
Level 1: JEE Main Basics
Why is O₂ paramagnetic while O₃ is diamagnetic?
Write balanced equations for: a) Laboratory preparation of O₂ from KClO₃ b) Preparation of H₂S from FeS c) Contact process for H₂SO₄
Arrange in increasing order of acidic strength: H₂O, H₂S, H₂Se, H₂Te
What is the oxidation state of S in: a) SO₂ b) SO₃ c) H₂SO₄ d) H₂S
Why is SO₂ bleaching action temporary while O₃ is permanent?
Level 2: JEE Main Advanced
Explain why conc. H₂SO₄ cannot be used to prepare HBr from NaBr. Which acid should be used?
Draw the structure of: a) O₃ b) SO₂ c) SO₃ d) H₂SO₄
Calculate the bond angle in: a) H₂O vs H₂S b) SO₂ vs SO₃ Explain the differences.
Why is SO₃ not directly dissolved in water in Contact process?
Conc. H₂SO₄ shows different behavior with cold and hot conditions. Explain with examples.
Level 3: JEE Advanced
Explain the following observations: a) H₂O is liquid while H₂S is gas at room temperature b) Electron gain enthalpy of S is more negative than O c) Rhombic sulfur converts to monoclinic at 369 K
In Contact process, the optimal temperature is 450°C despite the reaction being exothermic. Explain using Le Chatelier’s principle and reaction kinetics.
Complete and balance: a) Na₂O₂ + H₂O → b) KO₂ + H₂O → c) H₂S + SO₂ → d) Sugar + conc. H₂SO₄ →
When SO₂ is passed through acidified K₂Cr₂O₇ solution, the orange color changes to green. Write the balanced equation and explain the role of SO₂.
Calculate the oxidation number of S in: a) H₂S₂O₇ (oleum) b) H₂S₂O₈ (peroxodisulfuric acid) c) H₂S₂O₃ (thiosulfuric acid) d) Na₂S₄O₆ (sodium tetrathionate)
Cross-Links to Other Topics
Related to Periodic Classification
- Periodic Trends - Electron gain enthalpy anomaly
- Oxidation States - Variable oxidation of S
Related to Chemical Bonding
- Molecular Orbital Theory - O₂ paramagnetism
- Resonance - O₃, SO₂ structures
- Hybridization - SO₂ (sp²), SO₃ (sp²)
Related to Chemical Equilibrium
- Le Chatelier’s Principle - Contact process optimization
Related to Other Chapters
- Redox Reactions - SO₂ as reducing agent
- Qualitative Analysis - H₂S precipitation
- Environmental Chemistry - SO₂ pollution, ozone layer
Memory Palace for Group 16
Imagine an Industrial Complex:
Main Gate: Sign “Oh! So Sexy Teacher, Please!” (O, S, Se, Te, Po)
Oxygen Tower:
- Paramagnetic O₂ molecules spinning (two unpaired electrons)
- Three floors: Oxide (-2), Peroxide (-1), Superoxide (-1/2)
- Blue oxygen cylinder (liquid O₂ is blue)
Ozone Layer (on roof):
- Bent O₃ molecules at 117°
- UV shields protecting workers
- Pale blue gas warning signs
- Oxidizing power meter at maximum
Sulfur Factory:
- Yellow S₈ crown rings everywhere
- 369 K thermometer (rhombic to monoclinic transition)
- CS₂ storage tank (S solvent)
H₂S Warning Zone:
- Rotten egg smell detectors
- Black PbS, CuS, CdS samples (qualitative analysis display)
- Acidity increasing chart: H₂O < H₂S < H₂Se < H₂Te
Contact Process Plant (3 sections):
- Section 1: S burning (SO₂ yellow gas)
- Section 2: V₂O₅ catalyst chamber at 450°C, 2 atm (SO₃ production)
- Section 3: Oleum tanks (H₂S₂O₇), then H₂SO₄ storage
H₂SO₄ Applications Building:
- Floor 1: Dehydration chamber (sugar → carbon demo)
- Floor 2: Oxidation lab (Cu + H₂SO₄ → SO₂ brown fumes)
- Floor 3: Acid-base neutralization
- Basement: Battery acid storage
Quick Revision Checklist
- Group 16 configuration: ns² np⁴
- O₂ paramagnetic (two unpaired e⁻)
- Oxide types: M₂O (-2), M₂O₂ (-1), MO₂ (-1/2)
- O₃ preparation: Silent electric discharge
- O₃ structure: Bent, 117°, resonance
- O₃ bleaching: Permanent (oxidation)
- S allotropes: Rhombic ⇌ Monoclinic (369 K)
- H₂S: Rotten egg, acidic, reducing agent
- Acidity trend: H₂O < H₂S < H₂Se < H₂Te
- SO₂: Bent, 119°, amphoteric redox
- SO₂ bleaching: Temporary (reduction)
- Contact process: 2SO₂ + O₂ → 2SO₃ (450°C, 2 atm, V₂O₅)
- SO₃ + H₂SO₄ → H₂S₂O₇ (not direct H₂O)
- Conc. H₂SO₄: Dehydrating, oxidizing
- Can’t prepare HBr/HI with conc. H₂SO₄ (oxidizes)
Important Equations Summary
1. O₂ lab: 2KClO₃ --MnO₂--> 2KCl + 3O₂
2. O₃: 3O₂ --silent discharge--> 2O₃
3. Peroxide: Na₂O₂ + 2H₂O → 2NaOH + H₂O₂
4. Superoxide: 2KO₂ + 2H₂O → 2KOH + H₂O₂ + O₂
5. H₂S lab: FeS + 2HCl → FeCl₂ + H₂S
6. H₂S reducing: H₂S + Cl₂ → 2HCl + S
7. SO₂ lab: Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂
8. SO₂ bleaching: SO₂ + H₂O → H₂SO₃ (reducing)
9. Contact 1: S + O₂ → SO₂
10. Contact 2: 2SO₂ + O₂ → 2SO₃ (450°C, 2 atm, V₂O₅)
11. Contact 3: SO₃ + H₂SO₄ → H₂S₂O₇
12. Contact 4: H₂S₂O₇ + H₂O → 2H₂SO₄
13. Dehydration: C₁₂H₂₂O₁₁ + H₂SO₄(conc) → 12C + 11H₂O
14. Oxidation: Cu + 2H₂SO₄(conc) → CuSO₄ + SO₂ + 2H₂O
15. H₂S + SO₂: 2H₂S + SO₂ → 3S + 2H₂O
Last updated: July 2025 Previous: Group 15 Elements | Next: Group 17 Elements