Real-Life Connection: From Balloons to Lasers
Party balloons float because of helium! Neon lights up advertising signs in bright colors. Argon fills incandescent bulbs to prevent tungsten evaporation. Deep-sea divers breathe helium-oxygen mixtures to avoid nitrogen narcosis. And surprisingly, “inert” xenon forms compounds - breaking a century-old belief! These noble gases, once thought completely unreactive, have revolutionized lighting, medicine, and chemistry.
Group 18 Elements Overview
Members: Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), Radon (Rn)
Common Names:
- Noble gases (chemically unreactive)
- Inert gases (old name, not entirely accurate)
- Rare gases (low abundance)
Discovery: Most were discovered by Ramsay (Nobel Prize 1904)
Electronic Configuration Pattern
- General configuration: ns² np⁶ (except He: 1s²)
- Helium: 1s²
- Neon: [He] 2s² 2p⁶
- Argon: [Ne] 3s² 3p⁶
- Xenon: [Kr] 4d¹⁰ 5s² 5p⁶
Complete octet/duplet (stable configuration)
Memory Trick - “He Never Argued, King Xerxes Ruled”: He, Ne, Ar, Kr, Xe, Rn
Key Trends Down the Group
| Property | Trend | Explanation |
|---|---|---|
| Atomic radius | Increases | Additional shells |
| Ionization energy | Decreases | He (2372) > Ne (2081) > Ar (1521) > Kr (1351) > Xe (1170) kJ/mol |
| Electron gain enthalpy | Positive (endothermic) | Stable configuration, no tendency to gain electrons |
| Electronegativity | Very low (almost zero) | Complete octet, no need to attract electrons |
| Boiling point | Increases | van der Waals forces increase with size |
| Polarizability | Increases | Electron cloud more diffuse in larger atoms |
| Chemical reactivity | Increases | Xe > Kr > Ar » Ne, He (d-orbitals available) |
Memory Trick for Reactivity: “Xenon eXtremely reactive, Helium Hardly reacts”
Interactive Demo: Visualize Group 18 in the Periodic Table
Explore the noble gases and their unique position in the periodic table.
Exception Alert: All have positive electron gain enthalpy (energy required to add electron)
General Properties of Noble Gases
Physical Properties
| Gas | Atomic number | Atomic mass | b.p. (K) | Abundance |
|---|---|---|---|---|
| He | 2 | 4 | 4.2 | 2nd most abundant in universe |
| Ne | 10 | 20 | 27 | Advertising signs |
| Ar | 18 | 40 | 87 | 0.93% of air (most abundant noble gas) |
| Kr | 36 | 84 | 120 | Rare, lighting |
| Xe | 54 | 131 | 165 | Very rare, anesthetic |
| Rn | 86 | 222 | 211 | Radioactive, from Ra decay |
All are:
- Colorless, odorless, tasteless
- Monoatomic gases
- Non-flammable
- Sparingly soluble in water
- Good thermal and electrical insulators
Memory Trick for Abundance: “Argon = Abundant (1% of air), Others = Occasional”
Why Are Noble Gases Unreactive?
- Complete octet (stable electronic configuration)
- High ionization energy (difficult to remove electrons)
- Positive electron gain enthalpy (won’t accept electrons)
- No tendency to form covalent bonds (already stable)
Exception: Xe and Kr can form compounds (have accessible d-orbitals, lower IE)
Occurrence and Extraction
Occurrence
In atmosphere:
- Ar: 0.93% (most abundant)
- Ne: 0.0018%
- He: 0.0005%
- Kr, Xe: traces
He sources:
- Natural gas wells (up to 7%)
- Radioactive decay (α-particles are He²⁺)
- Sun and stars (fusion reactions)
Rn: Radioactive decay of ²²⁶Ra
²²⁶Ra → ²²²Rn + ⁴He (α-decay)
Extraction
From air (fractional distillation of liquid air):
- Air liquefied at low temperature
- N₂ boils off first (-196°C)
- Ar, Ne, Kr, Xe remain
- Separated by further fractional distillation
From natural gas (for He):
- Cooling and compression
- He doesn’t liquefy easily (lowest b.p. 4.2 K)
- Separated from other gases
Memory Trick: “FRACS = Fractional distillation Removes Air Components, Separates nobles”
Properties in Detail
Helium (He)
Unique Properties:
- Lightest noble gas (after H₂)
- Lowest boiling point (4.2 K, -269°C)
- Cannot be solidified at normal pressure (quantum effects)
- Only element with two liquid phases (He-I and He-II)
- He-II is superfluid (zero viscosity!)
- Non-flammable (unlike H₂)
Uses:
- Balloons, airships (lighter than air, non-flammable)
- Cryogenics (cooling superconducting magnets in MRI)
- Deep-sea diving (with O₂, prevents nitrogen narcosis)
- Leak detection (small atoms, penetrate tiny holes)
- Inert atmosphere for welding
- Breathing mixtures for asthma patients
Why He, not H₂ for balloons?
- H₂ is flammable (Hindenburg disaster 1937)
- He is non-flammable and safe
Neon (Ne)
Properties:
- Reddish-orange glow in discharge tubes
- Low reactivity (no compounds known)
Uses:
- Neon signs (advertising, distinctive colors)
- Gas lasers (He-Ne laser, red light 632.8 nm)
- High-voltage indicators
- Television tubes
Argon (Ar)
Properties:
- Most abundant noble gas in atmosphere
- Obtained as by-product in O₂ production
Uses:
- Incandescent light bulbs (prevents W filament oxidation)
- Welding (inert atmosphere)
- Museum preservation (prevents oxidation)
- Wine preservation
- Electronics manufacturing
Krypton (Kr)
Properties:
- White glow in discharge tubes
- More polarizable than Ar
Uses:
- High-performance light bulbs
- Flash lamps for photography
- Lasers (excimer lasers)
- Definition of meter (1960-1983): 1,650,763.73 wavelengths of Kr-86 orange line
Xenon (Xe)
Properties:
- Blue glow in discharge tubes
- Forms compounds (most reactive noble gas)
- Anesthetic properties
Uses:
- High-intensity lamps (xenon arc lamps)
- Flash lamps
- Medical anesthetic
- Ion propulsion (space engines)
- Excimer lasers (eye surgery)
Radon (Rn)
Properties:
- Radioactive (α-emitter)
- Longest-lived isotope: ²²²Rn (t₁/₂ = 3.8 days)
- Health hazard (accumulates in basements)
Uses:
- Cancer radiotherapy (limited, due to radioactivity)
- Earthquake prediction (Rn emission changes)
Compounds of Noble Gases
Historical Background
1962: Neil Bartlett’s breakthrough
O₂⁺[PtF₆]⁻ (known compound, orange-red)
Xe + PtF₆ → Xe⁺[PtF₆]⁻ (similar color!)
Actually forms: XePtF₆ or Xe⁺[Pt₂F₁₁]⁻ (complex mixture)
Reasoning:
- IE of Xe (1170 kJ/mol) ≈ IE of O₂ (1175 kJ/mol)
- If O₂ can be oxidized by PtF₆, so can Xe!
Result: Shattered the myth that noble gases are “inert”
Memory Trick: “BART = Bartlett’s Argument: Reactivity Tested” (Xe compounds discovered)
Xenon Fluorides
Why only fluorine?
- Most electronegative element
- Small size, strong oxidizer
- Can oxidize Xe
Why Xe, not He, Ne, Ar?
- Xe largest, lowest IE
- d-orbitals available (5d)
- More polarizable
1. Xenon Difluoride (XeF₂)
Preparation:
Xe + F₂ → XeF₂ (1:1 ratio, 673 K, Ni vessel)
or 2Xe + 2F₂ → 2XeF₂ (electrical discharge)
Structure:
- Linear (sp³d hybridization)
- Three lone pairs on equatorial positions (VSEPR: AX₂E₃)
- F-Xe-F angle: 180°
Properties:
- Colorless crystalline solid
- Powerful fluorinating agent
- Hydrolyzes readily
Reactions:
- Hydrolysis:
2XeF₂ + 2H₂O → 2Xe + 4HF + O₂
- With hydrogen:
XeF₂ + H₂ → Xe + 2HF
- Fluorinating agent:
XeF₂ + 2HCl → Xe + 2HF + Cl₂
XeF₂ + I₂ → Xe + 2IF
2. Xenon Tetrafluoride (XeF₄)
Preparation:
Xe + 2F₂ → XeF₄ (1:2 ratio, 673 K, 6 atm, Ni vessel)
Structure:
- Square planar (sp³d² hybridization)
- Two lone pairs on axial positions (VSEPR: AX₄E₂)
- F-Xe-F angles: 90°
Properties:
- Colorless crystalline solid
- More reactive than XeF₂
- Strong fluorinating and oxidizing agent
Reactions:
- Hydrolysis (in different conditions):
6XeF₄ + 12H₂O → 4Xe + 2XeO₃ + 24HF + 3O₂ (complete)
3XeF₄ + 6H₂O → Xe + XeO₃ + 12HF + 1.5O₂ (partial)
- With SiO₂ (glass attack):
2XeF₄ + SiO₂ → 2Xe + SiF₄ + O₂
3. Xenon Hexafluoride (XeF₆)
Preparation:
Xe + 3F₂ → XeF₆ (1:5 ratio, 573 K, 60-70 atm, Ni vessel)
Structure:
- Distorted octahedral (sp³d³ hybridization)
- One lone pair causes distortion (VSEPR: AX₆E)
- Fluxional (rapidly changing shape)
Properties:
- Colorless solid
- Most reactive xenon fluoride
- Very strong fluorinating agent
Reactions:
- Complete hydrolysis:
XeF₆ + 3H₂O → XeO₃ + 6HF
- Partial hydrolysis:
XeF₆ + H₂O → XeOF₄ + 2HF
XeF₆ + 2H₂O → XeO₂F₂ + 4HF
- With quartz:
2XeF₆ + SiO₂ → 2XeOF₄ + SiF₄
- Forming complex salts:
XeF₆ + MF → M⁺[XeF₇]⁻ (M = Na, K, Rb, Cs)
XeF₆ + 2MF → M₂⁺[XeF₈]²⁻
Comparison of Xenon Fluorides:
| Property | XeF₂ | XeF₄ | XeF₆ |
|---|---|---|---|
| Hybridization | sp³d | sp³d² | sp³d³ |
| Shape | Linear | Square planar | Distorted octahedral |
| Lone pairs | 3 | 2 | 1 |
| Reactivity | Least | Moderate | Most |
| Hydrolysis | Gives O₂ | Gives O₂, XeO₃ | Gives XeO₃ |
Memory Trick: “2-4-6 = Linear-Square-Octahedral” (structure trend)
Xenon Oxides
Xenon Trioxide (XeO₃)
Preparation:
6XeF₄ + 12H₂O → 2XeO₃ + 4Xe + 24HF + 3O₂
XeF₆ + 3H₂O → XeO₃ + 6HF
Structure:
- Trigonal pyramidal (sp³ hybridization)
- One lone pair (VSEPR: AX₃E)
Properties:
- Colorless, explosive solid
- Highly dangerous (explodes on contact with organic matter)
- Powerful oxidizing agent
- Acidic (forms perxenic acid)
Reactions:
- With water:
XeO₃ + H₂O → H₂XeO₄ (perxenic acid, unstable)
- Oxidizing agent:
XeO₃ + 6HI → Xe + 3I₂ + 3H₂O
Xenon Tetroxide (XeO₄)
Preparation:
Ba₂XeO₆ + 2H₂SO₄ → 2BaSO₄ + XeO₄ + 2H₂O
Structure:
- Tetrahedral (sp³ hybridization)
- No lone pairs (VSEPR: AX₄)
Properties:
- Colorless, highly explosive gas
- Most unstable xenon compound
- Explodes above -36°C
Xenon Oxyfluorides
Types: XeOF₂, XeOF₄, XeO₂F₂, XeO₃F₂
Example - XeOF₄:
Preparation:
XeF₆ + H₂O → XeOF₄ + 2HF
Structure:
- Square pyramidal (sp³d² hybridization)
- One lone pair (VSEPR: AX₅E)
Krypton Compounds
Very few compounds known (higher IE than Xe)
Example: KrF₂ (krypton difluoride)
Preparation:
Kr + F₂ → KrF₂ (electrical discharge at -183°C)
Structure: Linear (like XeF₂)
Properties:
- Colorless solid
- Decomposes at -10°C
- Very unstable
Why No Compounds of He, Ne, Ar?
- Very high ionization energy (He = 2372 kJ/mol)
- Very small size (difficult to accommodate electronegative atoms)
- No d-orbitals (in He, Ne; Ar has 3d but very high energy)
- Very stable configuration (difficult to disturb)
Theoretical: ArF₂ predicted but not synthesized yet
Uses of Noble Gases
| Gas | Main Uses |
|---|---|
| He | Balloons, cryogenics (MRI), diving, leak detection, inert atmosphere |
| Ne | Neon signs, lasers, voltage indicators |
| Ar | Light bulbs, welding, museum preservation, electronics |
| Kr | High-intensity lamps, photography flash, lasers |
| Xe | Arc lamps, anesthesia, ion propulsion, lasers |
| Rn | Radiotherapy (limited), earthquake prediction |
Memory Trick: “BALANCE = Balloons (He), Advertising (Ne), Lamps (Ar), Anesthesia (Xe), Nuclear therapy (Rn), Cryogenics (He), Electronics (Ar)”
Common Mistakes to Avoid
Mistake: Noble gases are completely inert
- Correct: Xe and Kr form compounds (especially with F)
Mistake: All noble gases form compounds
- Correct: Only Xe and Kr (mainly Xe) form stable compounds
Mistake: XeF₂ is bent like H₂O
- Correct: XeF₂ is linear (3 lone pairs on equatorial positions)
Mistake: XeF₄ is tetrahedral
- Correct: XeF₄ is square planar (2 lone pairs on axial positions)
Mistake: Noble gases have negative electron gain enthalpy
- Correct: Positive (endothermic, won’t accept electrons)
Mistake: He can be easily liquefied
- Correct: Lowest b.p. (4.2 K), very difficult to liquefy
Mistake: Xe forms compounds with all halogens equally
- Correct: Mainly with F (most electronegative), limited with Cl
Mistake: XeO₃ is safe to handle
- Correct: Highly explosive, dangerous!
Practice Problems
Level 1: JEE Main Basics
Why are Group 18 elements called noble gases?
Arrange in order of: a) Increasing boiling point: He, Ne, Ar, Kr, Xe b) Decreasing ionization energy: He, Ne, Ar, Kr, Xe
Write the electronic configuration of: a) Ne b) Ar c) Xe
Why is helium preferred over hydrogen in balloons?
Draw the structure of: a) XeF₂ b) XeF₄
Level 2: JEE Main Advanced
Explain why: a) Noble gases have positive electron gain enthalpy b) Xe forms compounds but He doesn’t c) Helium is used in deep-sea diving
Complete and balance: a) XeF₂ + H₂O → b) XeF₆ + 3H₂O → c) Xe + F₂ (1:2 ratio, heat) →
What is the hybridization and shape of: a) XeF₂ b) XeF₄ c) XeF₆ d) XeO₃
Why does XeF₂ have linear structure despite having lone pairs?
Neil Bartlett prepared Xe⁺[PtF₆]⁻. What was his reasoning based on ionization energies?
Level 3: JEE Advanced
Using VSEPR theory, predict the shapes of: a) XeF₂ (5 electron pairs) b) XeF₄ (6 electron pairs) c) XeOF₄ (6 electron pairs) d) XeO₃ (4 electron pairs) Explain the role of lone pairs.
The bond angles in XeF₄ are exactly 90° and 180°. Explain why there is no distortion despite the presence of lone pairs.
Calculate the oxidation state of Xe in: a) XeF₂ b) XeF₆ c) XeO₃ d) XeO₄ e) H₂XeO₄
Why is the F-Xe-F bond in XeF₂ longer than expected for a normal Xe-F single bond? (Hint: Consider 3-center-4-electron bonding)
Xenon forms XeF₆ but not XeCl₆. Explain based on: a) Electronegativity b) Size of halogen c) Bond energy considerations d) Ability to oxidize Xe
Cross-Links to Other Topics
Related to Periodic Classification
- Periodic Trends - Exceptional electron gain enthalpy
- Noble Gas Configuration - Stability
Related to Chemical Bonding
- VSEPR Theory - XeF₂, XeF₄, XeF₆ structures
- Hybridization - sp³d, sp³d², sp³d³
- 3-Center-4-Electron Bonds - XeF₂ bonding
Related to Atomic Structure
- Electronic Configuration - Octet rule
- Ionization Energy - Trends
Related to Other Chapters
- Qualitative Analysis - No reactions (inert)
- Nuclear Chemistry - Radon radioactivity
Memory Palace for Group 18
Imagine a Noble Gas Palace:
Palace Gates: Sign “He Never Argued, King Xerxes Ruled”
Hall of Stability (entrance):
- Complete octet models hanging (ns² np⁶)
- “No Entry” sign for extra electrons
- Positive electron gain enthalpy meter
Helium Wing (floating):
- Balloons everywhere (lighter than air)
- Cryogenic chamber at 4.2 K
- MRI machine (superconducting magnets)
- Diving suit with He-O₂ mixture
Neon Gallery:
- Colorful neon signs on walls
- Red He-Ne laser beams
- Advertising displays
Argon Chambers:
- Light bulbs with Ar gas
- Welding workshop (inert atmosphere)
- Museum artifacts in Ar cases
Xenon Laboratory (most active wing):
- Bartlett’s original apparatus (1962 display)
- PtF₆ orange crystals
Fluoride Section:
- XeF₂ model: Linear, 3 LP equatorial
- XeF₄ model: Square planar, 2 LP axial
- XeF₆ model: Distorted octahedral, 1 LP
Oxide Section (danger zone):
- XeO₃ behind thick glass (explosive warning!)
- Oxidizing power demonstration
- Trigonal pyramidal model
Oxyfluoride Gallery:
- XeOF₄ model: Square pyramidal
Radioactive Basement:
- Radon chamber (sealed, radiation warning)
- ²²²Rn decay counter
- Medical radiotherapy equipment (historical)
Quick Revision Checklist
- Group 18 configuration: ns² np⁶ (He: 1s²)
- Complete octet = stable = unreactive
- Positive electron gain enthalpy (all nobles)
- Boiling point increases down group
- He: Lowest b.p. (4.2 K), balloons, cryogenics
- Ne: Neon signs, red-orange glow
- Ar: Most abundant (0.93% air), light bulbs
- Xe: Forms compounds (most reactive noble)
- Rn: Radioactive, α-emitter
- Bartlett 1962: Xe⁺[PtF₆]⁻ (first noble gas compound)
- XeF₂: Linear, sp³d, 3 LP
- XeF₄: Square planar, sp³d², 2 LP
- XeF₆: Distorted octahedral, sp³d³, 1 LP
- XeO₃: Explosive, trigonal pyramidal
- Only F forms stable Xe compounds (most electronegative)
Important Equations Summary
1. XeF₂ preparation: Xe + F₂ → XeF₂ (673 K, 1:1)
2. XeF₄ preparation: Xe + 2F₂ → XeF₄ (673 K, 6 atm, 1:2)
3. XeF₆ preparation: Xe + 3F₂ → XeF₆ (573 K, 60 atm, 1:5)
4. XeF₂ hydrolysis: 2XeF₂ + 2H₂O → 2Xe + 4HF + O₂
5. XeF₄ hydrolysis: 6XeF₄ + 12H₂O → 4Xe + 2XeO₃ + 24HF + 3O₂
6. XeF₆ hydrolysis: XeF₆ + 3H₂O → XeO₃ + 6HF
7. XeF₆ partial: XeF₆ + H₂O → XeOF₄ + 2HF
8. XeO₃ from XeF₄: 6XeF₄ + 12H₂O → 2XeO₃ + 4Xe + 24HF + 3O₂
9. Bartlett: Xe + PtF₆ → Xe⁺[PtF₆]⁻
10. Complex: XeF₆ + MF → M⁺[XeF₇]⁻
11. Rn decay: ²²⁶Ra → ²²²Rn + ⁴He
12. KrF₂: Kr + F₂ → KrF₂ (discharge, -183°C)
Visualization: Lone Pair Positions
Key Concept: Lone pairs occupy positions to minimize repulsion (VSEPR)
XeF₂ (AX₂E₃):
LP
|
LP--Xe--LP (3 LP equatorial)
/ \
F F (2 F axial) → Linear
XeF₄ (AX₄E₂):
LP
|
F---Xe---F (2 LP axial)
|
LP
/ \
F F (4 F equatorial) → Square planar
XeF₆ (AX₆E):
Octahedral with 1 LP → Distorted
Memory Rule: Lone pairs prefer equatorial in 5-coordination, axial in 6-coordination
Last updated: August 2025 Previous: Group 17 Elements | Next: Oxoacids of p-Block