Electrochemical Cells

Master galvanic cells, cell notation, EMF, and the fundamentals of converting chemical energy to electrical energy.

Introduction

Every smartphone, laptop, and electric vehicle runs on electrochemical cells! These ingenious devices convert chemical energy directly into electrical energy through spontaneous redox reactions. Understanding how they work is essential not just for JEE, but for comprehending the technology powering our modern world.

Electric Vehicles Revolution
The 2024 BYD Seagull and Tesla Model Y dominate global EV sales with ranges exceeding 300 miles. Each car contains thousands of lithium-ion cells working together! When you accelerate, lithium ions flow through an electrolyte while electrons power the motor. The chemistry you’ll learn here enables this green revolution. By 2025, EVs are projected to make up 20% of global car sales!

Electrochemical Cell Diagram

Visualize the complete galvanic cell with anode, cathode, salt bridge, and electron flow:

Galvanic (Voltaic) Cell - Daniell CellZn | Zn2+ (1M) || Cu2+ (1M) | Cu --- E cell = 1.10 VZnANODE(negative terminal)ZnSO4 Solution (1M)Oxidation (loss of e-)Zn --> Zn2+ + 2e-Zn2+Zn2+Zn2+Zn dissolvesCuCATHODE(positive terminal)CuSO4 Solution (1M)Reduction (gain of e-)Cu2+ + 2e- --> CuCu2+Cu2+Cu depositsSALT BRIDGE(KCl or KNO3 in agar gel)K+K+K+Cl-Cl-K+Cl-ELECTRON FLOW(through external circuit: Anode --> Cathode)1.10 VE cellKey Concepts:Anode: Oxidation (AN OX), negative, mass decreasesCathode: Reduction (RED CAT), positive, mass increasesSalt bridge: Maintains electrical neutralityE cell = E cathode - E anode = 0.34 - (-0.76) = 1.10 VFlow Direction:Electrons: Anode --> Cathode (wire)Current: Cathode --> Anode (opposite!)

Interactive: Electrochemical Cell in Action

See how electrons flow through the external circuit while ions migrate through the salt bridge:


What is an Electrochemical Cell?

An electrochemical cell is a device that converts chemical energy into electrical energy (or vice versa) through redox reactions.

Types of Electrochemical Cells

graph TD
    A[Electrochemical Cells] --> B[Galvanic/Voltaic Cells]
    A --> C[Electrolytic Cells]
    B --> B1[Spontaneous reactions]
    B --> B2[ΔG < 0, E°cell > 0]
    B --> B3[Chemical → Electrical]
    C --> C1[Non-spontaneous reactions]
    C --> C2[ΔG > 0, E°cell < 0]
    C --> C3[Electrical → Chemical]

    style B fill:#2ecc71
    style C fill:#e74c3c
FeatureGalvanic CellElectrolytic Cell
Energy conversionChemical → ElectricalElectrical → Chemical
Nature of reactionSpontaneousNon-spontaneous
ΔGNegativePositive
E°cellPositiveNegative
AnodeNegative terminalPositive terminal
CathodePositive terminalNegative terminal
ExampleDaniell cell, batteriesElectrolysis of water
Common JEE Mistake

Mistake: Thinking anode is always positive

Truth:

  • In galvanic cells: Anode is negative (electrons leave here)
  • In electrolytic cells: Anode is positive (connected to + terminal)

Remember: Anode = where oxidation occurs (AN OX). Cathode = where reduction occurs (RED CAT)


The Daniell Cell: A Classic Example

The Daniell cell was invented by John Frederic Daniell in 1836 and powered early telegraph systems!

Construction

Setup:

  • Left half-cell: Zinc electrode in ZnSO₄ solution
  • Right half-cell: Copper electrode in CuSO₄ solution
  • Salt bridge: KCl or NH₄NO₃ solution in agar-agar gel

Reactions

At Anode (Zn electrode): Oxidation

$$\text{Zn}_{(s)} \rightarrow \text{Zn}^{2+}_{(aq)} + 2e^-$$

At Cathode (Cu electrode): Reduction

$$\text{Cu}^{2+}_{(aq)} + 2e^- \rightarrow \text{Cu}_{(s)}$$

Overall Cell Reaction:

$$\boxed{\text{Zn}_{(s)} + \text{Cu}^{2+}_{(aq)} \rightarrow \text{Zn}^{2+}_{(aq)} + \text{Cu}_{(s)}}$$

Cell Diagram (Cell Notation)

$$\boxed{\text{Zn}_{(s)} | \text{Zn}^{2+}_{(aq)} || \text{Cu}^{2+}_{(aq)} | \text{Cu}_{(s)}}$$

Convention:

  • Anode (oxidation) on left
  • Cathode (reduction) on right
  • | = phase boundary
  • || = salt bridge
  • Concentration usually written: Zn | Zn²⁺(1M) || Cu²⁺(1M) | Cu

Components of Electrochemical Cells

1. Electrodes

Anode:

  • Electrode where oxidation occurs
  • Electrons are released
  • In galvanic cells: negative terminal
  • Mass decreases if electrode participates in reaction

Cathode:

  • Electrode where reduction occurs
  • Electrons are consumed
  • In galvanic cells: positive terminal
  • Mass increases if metal ions deposit

2. Electrolyte

Ionic solution that allows ion flow between electrodes. Must contain ions of the electrode material or other species that can undergo redox reactions.

3. Salt Bridge

Function:

  • Maintains electrical neutrality in half-cells
  • Allows ion migration without mixing solutions
  • Completes the internal circuit

Why needed? Without salt bridge:

  • Zn²⁺ accumulates in anode compartment → positive charge builds up
  • Cu²⁺ depletes in cathode compartment → negative charge builds up
  • This charge separation stops electron flow!

Salt bridge action:

  • Anions (Cl⁻) migrate toward anode
  • Cations (K⁺) migrate toward cathode
  • Neutralizes charge buildup
Why KCl or NH₄NO₃?

The salt bridge uses salts with nearly equal ionic mobilities:

  • KCl: K⁺ and Cl⁻ have similar speeds
  • NH₄NO₃: NH₄⁺ and NO₃⁻ migrate at similar rates

This prevents liquid junction potential! Also, these ions don’t react with electrode materials.


Cell Notation (Cell Diagram)

Standard Representation

$$\text{Anode} | \text{Anode electrolyte} || \text{Cathode electrolyte} | \text{Cathode}$$

Notation Rules

  1. Anode on left, cathode on right
  2. | represents phase boundary (solid|liquid, gas|liquid)
  3. || represents salt bridge
  4. , separates species in same phase
  5. Concentrations/pressures in parentheses
  6. Inert electrodes (Pt, graphite) written explicitly

Examples

Example 1: Daniell cell

$$\text{Zn}_{(s)} | \text{Zn}^{2+}_{(1M)} || \text{Cu}^{2+}_{(1M)} | \text{Cu}_{(s)}$$

Example 2: Hydrogen-silver cell

$$\text{Pt}_{(s)} | \text{H}_2_{(1 \text{ atm})} | \text{H}^+_{(1M)} || \text{Ag}^+_{(1M)} | \text{Ag}_{(s)}$$

Example 3: Gas electrode with inert electrode

$$\text{Pt}_{(s)} | \text{Fe}^{2+}_{(aq)}, \text{Fe}^{3+}_{(aq)} || \text{Cl}_2_{(g)} | \text{Cl}^-_{(aq)} | \text{Pt}_{(s)}$$

Example 4: Concentration cell

$$\text{Pt}_{(s)} | \text{H}_2_{(1 \text{ atm})} | \text{H}^+_{(0.1M)} || \text{H}^+_{(1M)} | \text{H}_2_{(1 \text{ atm})} | \text{Pt}_{(s)}$$
JEE Convention Alert

Always write:

  • More dilute solution or lower pressure on left (anode)
  • Higher concentration or pressure on right (cathode)

This ensures positive EMF for spontaneous direction!


Electromotive Force (EMF)

Definition

EMF (E°cell) is the potential difference between two electrodes when no current is flowing (open circuit).

Standard EMF

Standard conditions:

  • Temperature: 298 K (25°C)
  • Pressure: 1 bar (≈ 1 atm)
  • Concentration: 1 M for all solutions
  • Pure solids and liquids
$$\boxed{E°_{\text{cell}} = E°_{\text{cathode}} - E°_{\text{anode}}}$$

Calculating Cell EMF

For Daniell cell:

  • $E°(\text{Cu}^{2+}/\text{Cu}) = +0.34 \text{ V}$ (cathode)
  • $E°(\text{Zn}^{2+}/\text{Zn}) = -0.76 \text{ V}$ (anode)
$$E°_{\text{cell}} = 0.34 - (-0.76) = \boxed{1.10 \text{ V}}$$
Memory Trick: CROP

Cathode → Reduction → Oxidizing agent → Positive terminal (in galvanic cell)

Anode → Oxidation → Reducing agent → Negative terminal


Standard Hydrogen Electrode (SHE)

The SHE is the universal reference electrode with assigned potential of 0.00 V.

Construction

  • Electrode: Platinum foil coated with platinum black (high surface area)
  • Gas: Pure H₂ at 1 bar pressure
  • Electrolyte: 1 M H⁺ (usually HCl)
  • Temperature: 298 K

Reaction

As anode (oxidation):

$$\text{H}_2 \rightarrow 2\text{H}^+ + 2e^-$$

(E° = 0.00 V)

As cathode (reduction):

$$2\text{H}^+ + 2e^- \rightarrow \text{H}_2$$

(E° = 0.00 V)

Cell Notation

$$\text{Pt}_{(s)} | \text{H}_2_{(1 \text{ bar})} | \text{H}^+_{(1M)} || \text{...}$$
Why Platinum Black?

Platinum black provides huge surface area for:

  1. Better adsorption of H₂ molecules
  2. Faster electron transfer
  3. Establishment of equilibrium: H₂ ⇌ 2H⁺ + 2e⁻

Plus, platinum is inert and doesn’t react with H₂ or H⁺!


Common Electrode Systems

1. Metal-Metal Ion Electrode

Example: Zn/Zn²⁺, Cu/Cu²⁺

$$\text{M}^{n+} + ne^- \rightarrow \text{M}$$

Cell notation: $\text{M} | \text{M}^{n+}$

2. Gas Electrode

Example: Hydrogen electrode, Chlorine electrode

$$\text{Cl}_2 + 2e^- \rightarrow 2\text{Cl}^-$$

Cell notation: $\text{Pt} | \text{Cl}_2 | \text{Cl}^-$

Requires inert electrode (Pt) to transfer electrons

3. Redox Electrode

Example: Fe³⁺/Fe²⁺

$$\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+}$$

Cell notation: $\text{Pt} | \text{Fe}^{2+}, \text{Fe}^{3+}$

Both species in same solution, need inert electrode

4. Metal-Insoluble Salt Electrode

Example: Calomel electrode (Hg/Hg₂Cl₂)

$$\text{Hg}_2\text{Cl}_2 + 2e^- \rightarrow 2\text{Hg} + 2\text{Cl}^-$$

Example: Silver-silver chloride electrode

$$\text{AgCl} + e^- \rightarrow \text{Ag} + \text{Cl}^-$$

Cell notation: $\text{Ag} | \text{AgCl}_{(s)} | \text{Cl}^-$


Measuring Standard Electrode Potential

Setup with SHE

To find $E°(\text{Zn}^{2+}/\text{Zn})$:

Cell:

$$\text{Zn}_{(s)} | \text{Zn}^{2+}_{(1M)} || \text{H}^+_{(1M)} | \text{H}_2_{(1 \text{ bar})} | \text{Pt}_{(s)}$$

Measured EMF: E°cell = +0.76 V

$$E°_{\text{cell}} = E°_{\text{cathode}} - E°_{\text{anode}}$$ $$0.76 = 0.00 - E°(\text{Zn}^{2+}/\text{Zn})$$ $$\boxed{E°(\text{Zn}^{2+}/\text{Zn}) = -0.76 \text{ V}}$$

Spontaneity and Cell Potential

Relationship with Gibbs Free Energy

$$\boxed{\Delta G° = -nFE°_{\text{cell}}}$$

where:

  • $n$ = number of electrons transferred
  • $F$ = Faraday’s constant = 96,500 C/mol
  • $E°_{\text{cell}}$ in volts
  • $\Delta G°$ in joules

Spontaneity Criteria

E°cellΔG°Reaction
PositiveNegativeSpontaneous
ZeroZeroAt equilibrium
NegativePositiveNon-spontaneous

For Daniell cell:

$$\Delta G° = -2 \times 96500 \times 1.10 = -212,300 \text{ J} = -212.3 \text{ kJ}$$

The large negative ΔG° confirms highly spontaneous reaction!

Quick Check

Q: If E°cell = 0, what does it mean?

A: The system is at equilibrium. No net reaction occurs, and the battery is “dead”!


Practice Problems

Level 1: JEE Main

Q1. Write the cell notation for a cell with the following reaction:

$$\text{Mg}_{(s)} + 2\text{Ag}^+_{(aq)} \rightarrow \text{Mg}^{2+}_{(aq)} + 2\text{Ag}_{(s)}$$

Q2. In a galvanic cell, which electrode is the cathode?

  • (a) Where oxidation occurs
  • (b) Where reduction occurs
  • (c) The negative terminal
  • (d) Where electrons are produced

Q3. Calculate E°cell for:

$$\text{Zn}_{(s)} + 2\text{Ag}^+_{(aq)} \rightarrow \text{Zn}^{2+}_{(aq)} + 2\text{Ag}_{(s)}$$

Given: E°(Ag⁺/Ag) = +0.80 V, E°(Zn²⁺/Zn) = -0.76 V


Level 2: JEE Main/Advanced

Q4. For the cell:

$$\text{Pt} | \text{H}_2(1 \text{ atm}) | \text{H}^+(1M) || \text{Ni}^{2+}(1M) | \text{Ni}$$

If E°cell = -0.25 V, find E°(Ni²⁺/Ni).

Q5. A galvanic cell is set up with aluminum and silver electrodes. Write:

  • (a) Half-reactions at each electrode
  • (b) Overall cell reaction
  • (c) Cell notation Given: E°(Al³⁺/Al) = -1.66 V, E°(Ag⁺/Ag) = +0.80 V

Q6. Why is a salt bridge necessary in a galvanic cell? What happens if it’s removed?


Level 3: JEE Advanced

Q7. For the cell:

$$\text{Pt} | \text{Fe}^{2+}(0.1M), \text{Fe}^{3+}(0.01M) || \text{Ag}^+(1M) | \text{Ag}$$

Write the cell reaction and calculate E°cell. Given: E°(Fe³⁺/Fe²⁺) = +0.77 V, E°(Ag⁺/Ag) = +0.80 V

Q8. Calculate ΔG° for the reaction:

$$3\text{Cu}_{(s)} + 2\text{Au}^{3+}_{(aq)} \rightarrow 3\text{Cu}^{2+}_{(aq)} + 2\text{Au}_{(s)}$$

Given: E°(Au³⁺/Au) = +1.50 V, E°(Cu²⁺/Cu) = +0.34 V

Q9. Design a galvanic cell that uses the reaction:

$$2\text{Al}_{(s)} + 3\text{Cd}^{2+}_{(aq)} \rightarrow 2\text{Al}^{3+}_{(aq)} + 3\text{Cd}_{(s)}$$

Write cell notation and calculate E°cell. Given: E°(Al³⁺/Al) = -1.66 V, E°(Cd²⁺/Cd) = -0.40 V


Solutions to Practice Problems

A1. $\text{Mg}_{(s)} | \text{Mg}^{2+}_{(aq)} || \text{Ag}^+_{(aq)} | \text{Ag}_{(s)}$

A2. (b) Where reduction occurs

A3. E°cell = 0.80 - (-0.76) = 1.56 V

A4. E°(Ni²⁺/Ni) = E°cathode = E°cell + E°anode = -0.25 + 0 = -0.25 V

A7. Cell reaction: Fe²⁺ + Ag⁺ → Fe³⁺ + Ag; E°cell = 0.80 - 0.77 = 0.03 V

A8. n = 6, E°cell = 1.50 - 0.34 = 1.16 V ΔG° = -6 × 96500 × 1.16 = -671.88 kJ

A9. $\text{Al}_{(s)} | \text{Al}^{3+}_{(aq)} || \text{Cd}^{2+}_{(aq)} | \text{Cd}_{(s)}$; E°cell = -0.40 - (-1.66) = 1.26 V


Common Mistakes to Avoid

Sign Convention Pitfalls

Mistake 1: Confusing anode/cathode polarity

  • Galvanic: Anode = negative, Cathode = positive
  • Electrolytic: Anode = positive, Cathode = negative

Mistake 2: Wrong formula for E°cell

  • Correct: E°cell = E°cathode - E°anode
  • Wrong: E°cell = E°anode - E°cathode

Mistake 3: Forgetting to identify cathode correctly

  • Remember: Reduction occurs at cathode (species with higher reduction potential)

Mistake 4: Writing cell notation backwards

  • Correct: Anode || Cathode (oxidation on left)
  • Wrong: Cathode || Anode

Key Points for JEE

Must Remember

  1. AN OX, RED CAT - Anode oxidation, Reduction cathode
  2. E°cell = E°cathode - E°anode (ALWAYS!)
  3. Positive E°cell → Spontaneous → Galvanic cell
  4. Standard conditions: 298 K, 1 bar, 1 M
  5. Salt bridge maintains electrical neutrality

Quick Formulas

$$\boxed{E°_{\text{cell}} = E°_{\text{cathode}} - E°_{\text{anode}}}$$ $$\boxed{\Delta G° = -nFE°_{\text{cell}}}$$ $$\boxed{E°_{\text{cell}} > 0 \implies \text{Spontaneous}}$$

Real-Life Applications

Why Phone Batteries Degrade

Your iPhone’s lithium-ion battery (2024 models have ~3,200 mAh capacity) degrades over time because:

  1. Side reactions consume electrolyte
  2. Dendrite formation can short-circuit cells
  3. SEI layer (solid-electrolyte interphase) thickens, increasing resistance

This is why Apple recommends keeping battery between 20-80% charge - it minimizes stress on the electrochemical reactions! The E°cell slowly decreases with age.


Within Electrochemistry

Cross-Chapter Connections

Foundation Topics

Physics Connections