Introduction
Your smartphone battery voltage drops from 4.2V when fully charged to 3.0V when depleted - but the chemistry inside hasn’t changed! What’s happening? The Nernst equation explains how cell potential varies with ion concentrations. This fundamental equation connects electrochemistry with thermodynamics and is one of the most important formulas in JEE Chemistry!
Interactive: Nernst Equation Demonstration
Watch how EMF changes as you vary ion concentrations:
Derivation of Nernst Equation
From Thermodynamics
For a general cell reaction at temperature T:
$$\Delta G = \Delta G° + RT \ln Q$$where Q = reaction quotient
Connecting to Electrochemistry
We know:
$$\Delta G = -nFE_{\text{cell}}$$ $$\Delta G° = -nFE°_{\text{cell}}$$Substituting:
$$-nFE_{\text{cell}} = -nFE°_{\text{cell}} + RT \ln Q$$Dividing by -nF:
$$E_{\text{cell}} = E°_{\text{cell}} - \frac{RT}{nF} \ln Q$$Converting to log₁₀
$$\ln Q = 2.303 \log Q$$ $$\boxed{E_{\text{cell}} = E°_{\text{cell}} - \frac{2.303RT}{nF} \log Q}$$At 298 K (25°C)
Substituting values:
- R = 8.314 J/(mol·K)
- T = 298 K
- F = 96,500 C/mol
This is the Nernst equation at 25°C - memorize this form for JEE!
General form: $E = E° - \frac{RT}{nF} \ln Q$
At 298 K (natural log): $E = E° - \frac{0.0591}{n} \ln Q$
At 298 K (log₁₀): $E = E° - \frac{0.059}{n} \log Q$ ← Use this for JEE!
Understanding the Reaction Quotient (Q)
For General Reaction
$$aA + bB \rightarrow cC + dD$$ $$Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$Important Rules for Q
- Solids and pure liquids: Activity = 1 (excluded from Q)
- Solutions: Use molar concentration [M]
- Gases: Use partial pressure in bar or atm
- Electrodes: Pure metals/solids omitted
Example: Daniell Cell
$$\text{Zn}_{(s)} + \text{Cu}^{2+}_{(aq)} \rightarrow \text{Zn}^{2+}_{(aq)} + \text{Cu}_{(s)}$$ $$Q = \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]}$$Note: Solid Zn and Cu are omitted!
Applying the Nernst Equation
Example 1: Simple Metal-Ion Cell
Problem: Calculate EMF of the cell at 25°C:
$$\text{Zn} | \text{Zn}^{2+}(0.1M) || \text{Cu}^{2+}(0.01M) | \text{Cu}$$Given: E°(Zn²⁺/Zn) = -0.76 V, E°(Cu²⁺/Cu) = +0.34 V
Solution:
Step 1: Calculate E°cell
$$E°_{\text{cell}} = E°_{\text{cathode}} - E°_{\text{anode}} = 0.34 - (-0.76) = 1.10 \text{ V}$$Step 2: Write cell reaction
$$\text{Zn} + \text{Cu}^{2+} \rightarrow \text{Zn}^{2+} + \text{Cu}$$Step 3: Find Q
$$Q = \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]} = \frac{0.1}{0.01} = 10$$Step 4: Apply Nernst equation (n = 2)
$$E_{\text{cell}} = 1.10 - \frac{0.059}{2} \log 10$$ $$E_{\text{cell}} = 1.10 - 0.0295 \times 1$$ $$\boxed{E_{\text{cell}} = 1.0705 \text{ V}}$$Example 2: Gas Electrode
Problem: Calculate EMF at 25°C:
$$\text{Pt} | \text{H}_2(2 \text{ atm}) | \text{H}^+(0.1M) || \text{Ag}^+(0.01M) | \text{Ag}$$Given: E°(Ag⁺/Ag) = +0.80 V, E°(H⁺/H₂) = 0.00 V
Solution:
Cell reaction:
$$\text{H}_2 + 2\text{Ag}^+ \rightarrow 2\text{H}^+ + 2\text{Ag}$$ $$E°_{\text{cell}} = 0.80 - 0 = 0.80 \text{ V}$$ $$Q = \frac{[\text{H}^+]^2}{P_{\text{H}_2}[\text{Ag}^+]^2} = \frac{(0.1)^2}{2 \times (0.01)^2} = \frac{0.01}{2 \times 0.0001} = 50$$ $$E_{\text{cell}} = 0.80 - \frac{0.059}{2} \log 50$$ $$E_{\text{cell}} = 0.80 - 0.0295 \times 1.699$$ $$\boxed{E_{\text{cell}} = 0.75 \text{ V}}$$If Q > 1: log Q is positive → Ecell decreases (voltage drops)
If Q < 1: log Q is negative → Ecell increases (voltage rises)
This makes sense: as products form (Q increases), the driving force (EMF) decreases!
Nernst Equation for Half-Cells
For Single Electrode
For a half-reaction: $\text{M}^{n+} + ne^- \rightarrow \text{M}$
$$\boxed{E = E° - \frac{0.059}{n} \log \frac{1}{[\text{M}^{n+}]}}$$ $$\boxed{E = E° + \frac{0.059}{n} \log [\text{M}^{n+}]}$$Example: Cu²⁺/Cu Electrode
For Cu²⁺(0.01M) at 25°C:
$$E = 0.34 + \frac{0.059}{2} \log(0.01)$$ $$E = 0.34 + 0.0295 \times (-2)$$ $$E = 0.34 - 0.059 = 0.281 \text{ V}$$Lower concentration → Lower electrode potential!
Concentration Cells
A concentration cell is a galvanic cell where both electrodes are made of the same material but are immersed in solutions of different concentrations.
Principle
- EMF is generated solely due to concentration difference
- Ions flow from higher to lower concentration
- Electrons flow to equalize concentrations
General Setup
$$\text{M} | \text{M}^{n+}(C_1) || \text{M}^{n+}(C_2) | \text{M}$$where C₁ < C₂ (C₁ is dilute, C₂ is concentrated)
EMF of Concentration Cell
E°cell = 0 (same electrodes!)
Cell reaction:
$$\text{M}^{n+}(C_2) \rightarrow \text{M}^{n+}(C_1)$$(Ions move from concentrated to dilute)
$$Q = \frac{C_1}{C_2}$$ $$\boxed{E_{\text{cell}} = 0 - \frac{0.059}{n} \log \frac{C_1}{C_2} = \frac{0.059}{n} \log \frac{C_2}{C_1}}$$Since C₂ > C₁, the log term is positive → Positive EMF!
“Dilute on Left, Concentrated on Right”
The dilute solution (lower conc.) goes to anode (left side in cell notation)
The concentrated solution goes to cathode (right side)
This ensures positive EMF and spontaneous electron flow!
Types of Concentration Cells
1. Electrolyte Concentration Cell
Same electrode, different electrolyte concentrations
Example:
$$\text{Zn} | \text{Zn}^{2+}(0.01M) || \text{Zn}^{2+}(1M) | \text{Zn}$$ $$E_{\text{cell}} = \frac{0.059}{2} \log \frac{1}{0.01} = \frac{0.059}{2} \times 2 = 0.059 \text{ V}$$At anode (dilute side): $\text{Zn} \rightarrow \text{Zn}^{2+}(0.01M) + 2e^-$
At cathode (concentrated side): $\text{Zn}^{2+}(1M) + 2e^- \rightarrow \text{Zn}$
Net: Zn²⁺ moves from concentrated to dilute until equilibrium!
2. Electrode Concentration Cell (Gas)
Different gas pressures at the same electrode
Example: Hydrogen concentration cell
$$\text{Pt} | \text{H}_2(P_1) | \text{H}^+(1M) || \text{H}^+(1M) | \text{H}_2(P_2) | \text{Pt}$$where P₁ < P₂
$$E_{\text{cell}} = \frac{0.059}{2} \log \frac{P_2}{P_1}$$3. Amalgam Concentration Cell
Different concentrations of metal in mercury amalgam
Example:
$$\text{Zn-Hg}(C_1) | \text{Zn}^{2+} || \text{Zn}^{2+} | \text{Zn-Hg}(C_2)$$Same principle applies!
Equilibrium and the Nernst Equation
At Equilibrium
When a cell reaches equilibrium:
- Ecell = 0 (no driving force)
- Q = K (reaction quotient = equilibrium constant)
Substituting into Nernst equation:
$$0 = E°_{\text{cell}} - \frac{0.059}{n} \log K$$ $$\boxed{E°_{\text{cell}} = \frac{0.059}{n} \log K}$$This connects electrode potential to equilibrium constant!
Example: Finding Equilibrium Constant
For the reaction: $\text{Zn} + \text{Cu}^{2+} \rightleftharpoons \text{Zn}^{2+} + \text{Cu}$
E°cell = 1.10 V, n = 2
$$1.10 = \frac{0.059}{2} \log K$$ $$\log K = \frac{2 \times 1.10}{0.059} = 37.29$$ $$\boxed{K = 10^{37.29} \approx 2 \times 10^{37}}$$Huge K! This reaction goes essentially to completion.
Q: If E°cell is positive, what does it tell us about K?
A: K > 1 (products favored at equilibrium). The more positive E°cell, the larger K becomes!
Relationship Summary
Connecting Everything
$$\boxed{\Delta G° = -nFE°_{\text{cell}} = -RT \ln K = -2.303RT \log K}$$At 298 K:
$$\boxed{E°_{\text{cell}} = \frac{0.059}{n} \log K}$$ $$\boxed{\Delta G° = -2.303 \times 8.314 \times 298 \times \log K = -5.706 \log K \text{ kJ/mol}}$$| E°cell | ΔG° | K | Reaction |
|---|---|---|---|
| Positive | Negative | > 1 | Spontaneous (products favored) |
| Zero | Zero | = 1 | Equilibrium |
| Negative | Positive | < 1 | Non-spontaneous (reactants favored) |
Practice Problems
Level 1: JEE Main
Q1. Calculate EMF of the cell at 25°C:
$$\text{Zn} | \text{Zn}^{2+}(0.01M) || \text{Cu}^{2+}(0.1M) | \text{Cu}$$Given: E°cell = 1.10 V
Q2. For a concentration cell:
$$\text{Ag} | \text{Ag}^+(0.001M) || \text{Ag}^+(0.1M) | \text{Ag}$$Calculate EMF at 25°C.
Q3. At what concentration of Ag⁺ will the electrode potential be 0.80 V at 25°C? Given: E°(Ag⁺/Ag) = +0.80 V
Level 2: JEE Main/Advanced
Q4. Calculate the equilibrium constant for the reaction:
$$\text{Fe}^{2+} + \text{Ag}^+ \rightarrow \text{Fe}^{3+} + \text{Ag}$$Given: E°(Ag⁺/Ag) = +0.80 V, E°(Fe³⁺/Fe²⁺) = +0.77 V
Q5. A hydrogen electrode is immersed in a solution of pH = 3 at 25°C. Calculate its electrode potential.
Q6. For the cell:
$$\text{Pt} | \text{H}_2(1 \text{ atm}) | \text{H}^+(xM) || \text{H}^+(0.1M) | \text{H}_2(1 \text{ atm}) | \text{Pt}$$If EMF = 0.0295 V, find x.
Level 3: JEE Advanced
Q7. Calculate ΔG° for the reaction at 25°C:
$$2\text{Al} + 3\text{Cu}^{2+} \rightarrow 2\text{Al}^{3+} + 3\text{Cu}$$Given: E°(Cu²⁺/Cu) = +0.34 V, E°(Al³⁺/Al) = -1.66 V
Q8. A cell has E°cell = 1.5 V. At what ratio of [products]/[reactants] will the cell EMF become zero at 25°C? (Assume n = 2)
Q9. For the reaction:
$$\text{Zn} + 2\text{Ag}^+ \rightleftharpoons \text{Zn}^{2+} + 2\text{Ag}$$If initial [Ag⁺] = 1M and [Zn²⁺] = 0.01M, what will be the EMF when [Ag⁺] drops to 0.5M?
Given: E°cell = 1.56 V
Q10. The EMF of the cell:
$$\text{Zn} | \text{Zn}^{2+}(C_1) || \text{Zn}^{2+}(C_2) | \text{Zn}$$is 0.0295 V at 25°C. Find the ratio C₂/C₁.
Solutions to Practice Problems
A1.
$$Q = \frac{0.01}{0.1} = 0.1$$ $$E = 1.10 - \frac{0.059}{2} \log(0.1) = 1.10 - \frac{0.059}{2}(-1) = 1.10 + 0.0295 = \boxed{1.1295 \text{ V}}$$A2.
$$E = \frac{0.059}{1} \log \frac{0.1}{0.001} = 0.059 \times 2 = \boxed{0.118 \text{ V}}$$A3.
$$0.80 = 0.80 + \frac{0.059}{1} \log[\text{Ag}^+]$$ $$\log[\text{Ag}^+] = 0$$ $$\boxed{[\text{Ag}^+] = 1 \text{ M}}$$(At standard concentration!)
A4.
$$E°_{\text{cell}} = 0.80 - 0.77 = 0.03 \text{ V}$$ $$0.03 = \frac{0.059}{1} \log K$$ $$K = 10^{0.03/0.059} = 10^{0.508} \approx \boxed{3.2}$$A5. pH = 3 → [H⁺] = 10⁻³ M
$$E = 0 + \frac{0.059}{2} \log(10^{-3})^2 = \frac{0.059}{2} \times (-6) = \boxed{-0.177 \text{ V}}$$A6.
$$0.0295 = \frac{0.059}{2} \log \frac{0.1}{x}$$ $$1 = \log \frac{0.1}{x}$$ $$\frac{0.1}{x} = 10$$ $$\boxed{x = 0.01 \text{ M}}$$A7.
$$E°_{\text{cell}} = 0.34 - (-1.66) = 2.00 \text{ V}$$ $$\Delta G° = -nFE° = -6 \times 96500 \times 2.00 = \boxed{-1158 \text{ kJ}}$$A8.
$$0 = 1.5 - \frac{0.059}{2} \log Q$$ $$\log Q = \frac{2 \times 1.5}{0.059} = 50.85$$ $$\boxed{Q = 10^{50.85} \approx 7.1 \times 10^{50}}$$A9. When [Ag⁺] = 0.5M, Zn reacted = 0.5/2 = 0.25 mol So [Zn²⁺] = 0.01 + 0.25 = 0.26M (if initial Zn was sufficient)
$$Q = \frac{0.26}{(0.5)^2} = \frac{0.26}{0.25} = 1.04$$ $$E = 1.56 - \frac{0.059}{2} \log(1.04) = 1.56 - 0.0005 \approx \boxed{1.559 \text{ V}}$$A10.
$$0.0295 = \frac{0.059}{2} \log \frac{C_2}{C_1}$$ $$\log \frac{C_2}{C_1} = 1$$ $$\boxed{\frac{C_2}{C_1} = 10}$$Common Mistakes to Avoid
Mistake 1: Wrong Q expression
- Remember: Solids and pure liquids are excluded
- Gases use partial pressure, solutions use molarity
Mistake 2: Forgetting the sign
- $E = E° - \frac{0.059}{n} \log Q$ (minus sign!)
- As Q increases, E decreases
Mistake 3: Wrong value of n
- n = number of electrons transferred in balanced equation
- Don’t confuse with ion charges!
Mistake 4: Concentration cell notation
- Dilute solution must be on left (anode)
- Otherwise E will be negative!
Mistake 5: Using ln instead of log
- At 298K: Use $\frac{0.059}{n} \log Q$ (log₁₀)
- NOT $\frac{0.0591}{n} \ln Q$ (unless specified)
Mistake 6: Multiplying E° by coefficients
- E° and E are intensive properties
- Doubling the reaction doesn’t double EMF!
Advanced Applications
pH Measurement
A pH meter uses the Nernst equation!
For hydrogen electrode in solution of unknown pH:
$$E = 0 - \frac{0.059}{2} \log \frac{(P_{\text{H}_2})}{[\text{H}^+]^2}$$At 1 atm H₂:
$$E = -0.059 \log \frac{1}{[\text{H}^+]} = 0.059 \log[\text{H}^+]$$ $$E = -0.059 \text{ pH}$$ $$\boxed{\text{pH} = -\frac{E}{0.059}}$$Solubility Product from EMF
For AgCl electrode:
$$\text{AgCl} + e^- \rightarrow \text{Ag} + \text{Cl}^-$$ $$E = E° - 0.059 \log[\text{Cl}^-]$$Can be used to find Ksp!
Key Formulas Summary
Must Memorize for JEE
Nernst equation (298 K):
$$\boxed{E = E° - \frac{0.059}{n} \log Q}$$Concentration cell:
$$\boxed{E = \frac{0.059}{n} \log \frac{C_{\text{concentrated}}}{C_{\text{dilute}}}}$$Equilibrium connection:
$$\boxed{E° = \frac{0.059}{n} \log K}$$Thermodynamic relations:
$$\boxed{\Delta G° = -nFE°}$$ $$\boxed{\Delta G° = -2.303RT \log K}$$Related Topics
Within Electrochemistry
- Electrochemical Cells - Foundation of cell EMF
- Electrode Potentials - Standard E° values and electrochemical series
- Oxidation-Reduction - Redox fundamentals
- Batteries - Practical voltage calculations in primary/secondary cells
- Electrolysis - Reverse EMF considerations
- Corrosion - Concentration cells in rusting
Equilibrium and Thermodynamics
- Chemical Equilibrium - Relationship between K and E°
- Gibbs Energy - ΔG° = -nFE° derivation
- Entropy - Spontaneity and equilibrium
- Ionic Equilibrium - pH calculations with Nernst
- Solubility Product - Ksp from EMF measurements
Solutions and Concentrations
- Concentration Methods - Molarity in Nernst calculations
- Colligative Properties - Activity vs concentration
Physics Connections
- Current Electricity - Voltage and potential difference
- Thermodynamics - Energy conversions
- Electrostatics - Electric Potential - Potential concepts
Mathematics Connections
- Logarithms - Log calculations in Nernst equation