Solutions chemistry deals with the properties of mixtures and how they differ from pure substances.
Overview
graph TD
A[Solutions] --> B[Concentration Units]
A --> C[Raoult's Law]
A --> D[Colligative Properties]
D --> D1[Vapor Pressure Lowering]
D --> D2[Boiling Point Elevation]
D --> D3[Freezing Point Depression]
D --> D4[Osmotic Pressure]Concentration Units
| Unit | Formula |
|---|---|
| Molarity (M) | $\frac{\text{mol solute}}{\text{L solution}}$ |
| Molality (m) | $\frac{\text{mol solute}}{\text{kg solvent}}$ |
| Mole Fraction (χ) | $\frac{n_i}{\sum n}$ |
| Mass % (w/w) | $\frac{\text{mass solute}}{\text{mass solution}} \times 100$ |
| ppm | $\frac{\text{mass solute}}{\text{mass solution}} \times 10^6$ |
Relation Between M and m
$$M = \frac{m \times d}{1 + \frac{m \times M_{solute}}{1000}}$$where d = density of solution
Raoult’s Law
For ideal solutions:
$$\boxed{P_A = \chi_A \times P_A^0}$$Total Vapor Pressure
$$P_{total} = P_A + P_B = \chi_A P_A^0 + \chi_B P_B^0$$Composition of Vapor
$$y_A = \frac{P_A}{P_{total}}$$Ideal vs Non-Ideal Solutions
| Property | Ideal | Positive Deviation | Negative Deviation |
|---|---|---|---|
| ΔH_mix | 0 | > 0 | < 0 |
| ΔV_mix | 0 | > 0 | < 0 |
| P_total | Raoult’s law | > Raoult’s | < Raoult’s |
| A-B forces | = A-A, B-B | < A-A, B-B | > A-A, B-B |
| Example | Benzene-Toluene | Ethanol-Water | Chloroform-Acetone |
Azeotropes
- Minimum boiling: Positive deviation (Ethanol-Water, 95.4%)
- Maximum boiling: Negative deviation (HCl-Water, 20.2%)
Cannot be separated by fractional distillation.
Colligative Properties
Properties depending only on the number of solute particles, not their nature.
1. Relative Lowering of Vapor Pressure
$$\boxed{\frac{P^0 - P}{P^0} = \chi_{solute} = \frac{n_2}{n_1 + n_2}}$$For dilute solutions: $\frac{\Delta P}{P^0} \approx \frac{n_2}{n_1}$
2. Elevation of Boiling Point
$$\boxed{\Delta T_b = K_b \times m}$$ $$\boxed{\Delta T_b = \frac{K_b \times w_2 \times 1000}{M_2 \times w_1}}$$where:
- $K_b$ = molal elevation constant
- $m$ = molality
- $w_2$, $M_2$ = mass and molar mass of solute
- $w_1$ = mass of solvent
3. Depression of Freezing Point
$$\boxed{\Delta T_f = K_f \times m}$$ $$\boxed{\Delta T_f = \frac{K_f \times w_2 \times 1000}{M_2 \times w_1}}$$4. Osmotic Pressure
$$\boxed{\pi = CRT = \frac{n}{V}RT}$$ $$\pi = \frac{w_2 RT}{M_2 V}$$Van’t Hoff Factor (i)
Accounts for dissociation or association:
$$\boxed{i = \frac{\text{observed colligative property}}{\text{calculated colligative property}}}$$For Electrolytes
$$i = 1 + (n-1)\alpha$$where:
- n = number of ions produced
- α = degree of dissociation
Examples:
- NaCl (n=2): $i = 1 + \alpha$
- BaCl₂ (n=3): $i = 1 + 2\alpha$
- Al₂(SO₄)₃ (n=5): $i = 1 + 4\alpha$
For Association
$$i = 1 - \alpha + \frac{\alpha}{n}$$where n = number of molecules associating
Modified Colligative Property Equations
$$\Delta T_b = i \times K_b \times m$$ $$\Delta T_f = i \times K_f \times m$$ $$\pi = i \times CRT$$Determination of Molar Mass
From any colligative property:
$$M_2 = \frac{K_b \times w_2 \times 1000}{\Delta T_b \times w_1}$$ $$M_2 = \frac{w_2 RT}{\pi V}$$Abnormal Molar Mass
| Observation | Cause | i value |
|---|---|---|
| M_observed < M_actual | Dissociation | > 1 |
| M_observed > M_actual | Association | < 1 |
Henry’s Law
For gas dissolved in liquid:
$$\boxed{P = K_H \times \chi_{gas}}$$where $K_H$ = Henry’s law constant
Higher $K_H$ → Lower solubility
Applications:
- Carbonated beverages
- Deep sea diving (bends)
- Respiration at high altitude
Practice Problems
Calculate the molality of a 20% glucose solution.
Calculate the boiling point of a solution containing 1 mol glucose in 1 kg water. ($K_b$ = 0.52 K⋅kg/mol)
Calculate the osmotic pressure of 0.1 M NaCl at 27°C. (Assume complete dissociation)
The freezing point depression of 0.01 m aqueous solution of urea is 0.0186°C. What is $K_f$ of water?