Binomial Theorem

Master binomial expansion, general term, middle term, and applications for JEE Mathematics.

The Binomial Theorem provides a formula for expanding powers of binomials.

Overview

graph TD
    A[Binomial Theorem] --> B[Expansion]
    A --> C[General Term]
    A --> D[Applications]
    B --> B1[Pascal's Triangle]
    C --> C1[Middle Term]
    C --> C2[Greatest Term]

Binomial Theorem

For positive integer n:

$$\boxed{(a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r}$$ $$= \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + ... + \binom{n}{n}b^n$$

Binomial Coefficient

$$\binom{n}{r} = {}^nC_r = \frac{n!}{r!(n-r)!}$$

Properties

  1. $\binom{n}{0} = \binom{n}{n} = 1$
  2. $\binom{n}{r} = \binom{n}{n-r}$
  3. $\binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1}$

General Term

The $(r+1)^{th}$ term in $(a+b)^n$:

$$\boxed{T_{r+1} = \binom{n}{r} a^{n-r} b^r}$$

Middle Term

If n is even: One middle term = $T_{(n/2)+1}$

If n is odd: Two middle terms = $T_{(n+1)/2}$ and $T_{(n+3)/2}$

Special Cases

$(1+x)^n$

$$= 1 + nx + \frac{n(n-1)}{2!}x^2 + ... + x^n$$

$(1-x)^n$

$$= 1 - nx + \frac{n(n-1)}{2!}x^2 - ... + (-1)^n x^n$$

Sum of Coefficients

Put $x = 1$: Sum of coefficients = $2^n$

Put $x = -1$: Sum of odd - even coefficients = $0$

JEE Tip
For finding a specific term, first find the value of r using conditions like “term independent of x” or “coefficient of $x^k$”.

Greatest Term

For $(1+x)^n$ where $x > 0$:

If $\frac{(n+1)x}{1+x}$ is an integer $= m$, then $T_m$ and $T_{m+1}$ are greatest.

Otherwise, $T_{[m]+1}$ is greatest (where [m] = floor).

Important Results

  1. Sum: $C_0 + C_1 + C_2 + ... + C_n = 2^n$

  2. Alternating: $C_0 - C_1 + C_2 - ... = 0$

  3. $C_0 + C_2 + C_4 + ... = C_1 + C_3 + ... = 2^{n-1}$

  4. $C_1 + 2C_2 + 3C_3 + ... + nC_n = n \cdot 2^{n-1}$

Multinomial Theorem

$$(x_1 + x_2 + ... + x_k)^n = \sum \frac{n!}{n_1! n_2! ... n_k!} x_1^{n_1} x_2^{n_2} ... x_k^{n_k}$$

where $n_1 + n_2 + ... + n_k = n$

Practice Problems

  1. Find the coefficient of $x^5$ in $(1+x)^{10}$.

  2. Find the middle term of $(2x - \frac{1}{x})^{10}$.

  3. Find the term independent of $x$ in $(x + \frac{1}{x^2})^{12}$.

  4. Prove: $C_0^2 + C_1^2 + C_2^2 + ... + C_n^2 = \binom{2n}{n}$

Quick Check
How many terms are there in the expansion of $(a+b+c)^n$?

Further Reading