Applications of Binomial Theorem in Approximations

Practical applications of binomial theorem for numerical approximations and JEE problem solving

Applications of Binomial Theorem in Approximations

Introduction

The Binomial Theorem is not just a theoretical toolβ€”it has powerful applications in numerical approximations, error estimation, series expansions, and solving JEE problems efficiently.


Binomial Approximation Formula

For small values of $x$ (typically $|x| < 1$):

$$\boxed{(1 + x)^n \approx 1 + nx}$$

Interactive Demo: Visualize Binomial Approximations

See how binomial expansion terms relate to Pascal’s Triangle.

This is the first-order approximation (keeping only first two terms).

More Accurate Approximation

$$\boxed{(1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2}x^2}$$

This is the second-order approximation (keeping first three terms).

General Form

$$\boxed{(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots}$$

Valid for: $|x| < 1$ and any real $n$ (positive, negative, or fraction)


Standard Approximations

Type 1: Computing Powers Near 1

For $(1 + x)^n$ where $x$ is small:

$$\boxed{(1 + x)^n \approx 1 + nx}$$

Examples:

  • $(1.01)^5 \approx 1 + 5(0.01) = 1.05$
  • $(0.99)^{10} = (1 - 0.01)^{10} \approx 1 + 10(-0.01) = 0.90$

Type 2: Square Roots

For $\sqrt{1 + x}$ where $x$ is small:

$$\boxed{\sqrt{1 + x} = (1 + x)^{1/2} \approx 1 + \frac{x}{2} - \frac{x^2}{8}}$$

First order: $\sqrt{1 + x} \approx 1 + \frac{x}{2}$

Examples:

  • $\sqrt{1.04} = \sqrt{1 + 0.04} \approx 1 + \frac{0.04}{2} = 1.02$
  • $\sqrt{0.96} = \sqrt{1 - 0.04} \approx 1 - \frac{0.04}{2} = 0.98$

Type 3: Cube Roots

For $\sqrt[3]{1 + x}$ where $x$ is small:

$$\boxed{\sqrt[3]{1 + x} = (1 + x)^{1/3} \approx 1 + \frac{x}{3} - \frac{x^2}{9}}$$

First order: $\sqrt[3]{1 + x} \approx 1 + \frac{x}{3}$

Examples:

  • $\sqrt[3]{1.06} \approx 1 + \frac{0.06}{3} = 1.02$
  • $\sqrt[3]{0.97} \approx 1 - \frac{0.03}{3} = 0.99$

Type 4: Reciprocals

For $\frac{1}{1 + x}$ where $x$ is small:

$$\boxed{\frac{1}{1 + x} = (1 + x)^{-1} \approx 1 - x + x^2 - x^3 + \cdots}$$

First order: $\frac{1}{1 + x} \approx 1 - x$

Examples:

  • $\frac{1}{1.02} \approx 1 - 0.02 = 0.98$
  • $\frac{1}{0.98} = \frac{1}{1 - 0.02} \approx 1 + 0.02 = 1.02$

Conversion to Standard Form

To use binomial approximation, convert expressions to the form $(1 + x)^n$:

Method 1: Factor Out

Example: Approximate $(2.03)^5$

$$\begin{align} (2.03)^5 &= (2 + 0.03)^5 \\ &= 2^5\left(1 + \frac{0.03}{2}\right)^5 \\ &= 32(1 + 0.015)^5 \\ &\approx 32[1 + 5(0.015)] \\ &= 32(1.075) \\ &= 34.4 \end{align}$$

Method 2: Rewrite Form

Example: Approximate $\sqrt{99}$

$$\begin{align} \sqrt{99} &= \sqrt{100 - 1} \\ &= 10\sqrt{1 - \frac{1}{100}} \\ &= 10(1 - 0.01)^{1/2} \\ &\approx 10\left[1 + \frac{1}{2}(-0.01)\right] \\ &= 10(1 - 0.005) \\ &= 9.95 \end{align}$$

Error Estimation

The error in approximation depends on terms we neglected.

Relative Error

If we use $(1 + x)^n \approx 1 + nx$, the relative error is approximately:

$$\boxed{\text{Relative Error} \approx \frac{n(n-1)x^2}{2}}$$

Example: For $(1.01)^{10}$ using $(1 + x)^n \approx 1 + nx$:

Error $\approx \frac{10 \times 9 \times (0.01)^2}{2} = 0.0045 = 0.45\%$


Applications in Different Areas

Application 1: Finding Greatest Term

To find numerically greatest term in $(a + b)^n$:

The greatest term is $T_{r+1}$ where:

$$\boxed{r = \left[\frac{(n+1)|b|}{|a| + |b|}\right]}$$

where $[x]$ denotes greatest integer function.

Alternative Method: $T_{r+1} > T_r$ when:

$$\frac{(n - r + 1)|b|}{r|a|} > 1$$

Application 2: Divisibility Problems

Check if $(a + b)^n$ is divisible by some number:

Use binomial expansion and modular arithmetic.

Example: Is $7^{100}$ divisible by 25?

$$7^{100} = (1 + 6)^{100} = 1 + 100(6) + \binom{100}{2}(6)^2 + \cdots$$

$= 1 + 600 + 4950(36) + \cdots$

First two terms: $1 + 600 = 601$ (divisible by 25? No, but continue…)

All terms after second contain $6^2 = 36$, and with large binomial coefficients, we can analyze modulo 25.


Application 3: Proving Inequalities

Using binomial theorem to prove inequalities:

Example: Prove $2^n > 1 + n$ for $n \geq 2$.

Proof:

$$2^n = (1 + 1)^n = 1 + n + \binom{n}{2} + \binom{n}{3} + \cdots$$

Since all binomial coefficients are positive for $n \geq 2$:

$$2^n > 1 + n$$

Application 4: Sum of Series

Finding sums using binomial identities:

Example: Find $1 + 2x + 3x^2 + 4x^3 + \cdots + (n+1)x^n$

This is related to differentiating $(1 + x)^{n+1}$.


Memory Tricks

🎯 Small x Approximation

“One plus n times x”: $(1 + x)^n \approx 1 + nx$ for small $x$

Mnemonic: “When Small, Keep Two”

  • When $x$ is small, keep (first) two terms

🎯 Root Approximations

  • Square root: “Half the difference” $\sqrt{1 + x} \approx 1 + \frac{x}{2}$

  • Cube root: “Third the difference” $\sqrt[3]{1 + x} \approx 1 + \frac{x}{3}$

  • $n$-th root: “$\frac{1}{n}$ the difference” $(1 + x)^{1/n} \approx 1 + \frac{x}{n}$

🎯 Conversion Trick

“Factor and Convert”:

  1. Factor out to make base close to 1
  2. Convert to $(1 + \text{small number})^n$
  3. Apply approximation

Common Mistakes to Avoid

❌ Mistake 1: Using Approximation for Large x

Wrong: $(1 + 0.5)^{10} \approx 1 + 10(0.5) = 6$ βœ—

Correct: $x = 0.5$ is not small enough for first-order approximation. Use more terms or calculate exactly: $(1.5)^{10} = 57.665$ βœ“

Rule: Use approximation only when $|x| \ll 1$ (typically $|x| < 0.1$)

❌ Mistake 2: Forgetting Sign in $(1 - x)^n$

Wrong: $(0.98)^5 = (1 - 0.02)^5 \approx 1 + 5(0.02)$ βœ—

Correct: $(1 - 0.02)^5 \approx 1 + 5(-0.02) = 1 - 0.1 = 0.9$ βœ“

❌ Mistake 3: Incorrect Factoring

Wrong: $(3.1)^4 = 3^4(1 + 0.1)^4$ βœ—

Correct: $(3.1)^4 = (3 + 0.1)^4 = 3^4\left(1 + \frac{0.1}{3}\right)^4$ βœ“

❌ Mistake 4: Wrong Root Formula

Wrong: $\sqrt{1 + x} \approx 1 + x$ βœ—

Correct: $\sqrt{1 + x} = (1 + x)^{1/2} \approx 1 + \frac{x}{2}$ βœ“


Solved Examples

Example 1: Power Approximation (JEE Main)

Find the approximate value of $(1.02)^{10}$ using binomial theorem.

Solution: $(1.02)^{10} = (1 + 0.02)^{10}$

Using $(1 + x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots$

First-order approximation:

$$(1.02)^{10} \approx 1 + 10(0.02) = 1.2$$

Second-order approximation:

$$\begin{align} (1.02)^{10} &\approx 1 + 10(0.02) + \frac{10 \times 9}{2}(0.02)^2 \\ &= 1 + 0.2 + 45(0.0004) \\ &= 1 + 0.2 + 0.018 \\ &= 1.218 \end{align}$$

Exact value: $(1.02)^{10} = 1.21899...$


Example 2: Square Root (JEE Main)

Calculate $\sqrt{26}$ approximately.

Solution:

$$\begin{align} \sqrt{26} &= \sqrt{25 + 1} \\ &= 5\sqrt{1 + \frac{1}{25}} \\ &= 5(1 + 0.04)^{1/2} \\ &\approx 5\left[1 + \frac{1}{2}(0.04)\right] \\ &= 5(1 + 0.02) \\ &= 5.1 \end{align}$$

Exact value: $\sqrt{26} = 5.0990...$

Error: $5.1 - 5.099 = 0.001$ (very small!)


Example 3: Reciprocal Approximation (JEE Advanced)

Find the value of $\frac{1}{(2.002)^3}$ up to 4 decimal places.

Solution:

$$\begin{align} \frac{1}{(2.002)^3} &= \frac{1}{2^3(1 + 0.001)^3} \\ &= \frac{1}{8} \cdot \frac{1}{(1 + 0.001)^3} \\ &= \frac{1}{8}(1 + 0.001)^{-3} \end{align}$$

Using $(1 + x)^{-3} = 1 - 3x + 6x^2 - 10x^3 + \cdots$:

$$\begin{align} &\approx \frac{1}{8}[1 - 3(0.001) + 6(0.001)^2] \\ &= \frac{1}{8}[1 - 0.003 + 0.000006] \\ &= \frac{1}{8}(0.997006) \\ &= 0.1246 \text{ (to 4 decimal places)} \end{align}$$

Example 4: Cube Root (JEE Advanced)

Evaluate $(127)^{1/3}$ approximately.

Solution:

$$\begin{align} (127)^{1/3} &= (125 + 2)^{1/3} \\ &= 125^{1/3}\left(1 + \frac{2}{125}\right)^{1/3} \\ &= 5(1 + 0.016)^{1/3} \\ &\approx 5\left[1 + \frac{1}{3}(0.016)\right] \\ &= 5(1 + 0.00533) \\ &= 5.0267 \end{align}$$

Exact value: $(127)^{1/3} = 5.0265...$


Example 5: Mixed Application (JEE Advanced)

If $(1 + x)^n = C_0 + C_1x + C_2x^2 + \cdots + C_nx^n$, find approximately the value of $C_0 + C_1/2 + C_2/4 + C_3/8 + \cdots + C_n/2^n$ when $n = 10$.

Solution: We need: $C_0 + \frac{C_1}{2} + \frac{C_2}{4} + \cdots + \frac{C_{10}}{2^{10}}$

This is $(1 + x)^n$ evaluated at $x = 1/2$:

$$(1 + 1/2)^{10} = (1.5)^{10}$$

Converting: $(1.5)^{10} = \left(\frac{3}{2}\right)^{10} = \frac{3^{10}}{2^{10}}$

$= \frac{59049}{1024} = 57.665$

Or using approximation: $1.5 = 1 + 0.5$

But $x = 0.5$ is too large for simple approximation. Better to calculate exactly or use logarithms.


Practice Problems

Level 1: JEE Main Basics

Problem 1.1: Find $(0.99)^5$ approximately.

Solution

$(0.99)^5 = (1 - 0.01)^5 \approx 1 + 5(-0.01) = 1 - 0.05 = 0.95$

More accurate: $1 - 5(0.01) + 10(0.01)^2 = 1 - 0.05 + 0.001 = 0.951$

Exact: $(0.99)^5 = 0.9510...$

Problem 1.2: Approximate $\sqrt{37}$.

Solution

$\sqrt{37} = \sqrt{36 + 1} = 6\sqrt{1 + 1/36} = 6(1 + 1/36)^{1/2}$

$\approx 6\left[1 + \frac{1}{2} \cdot \frac{1}{36}\right] = 6\left[1 + \frac{1}{72}\right] = 6.0833$

Exact: $\sqrt{37} = 6.0828...$

Problem 1.3: Find $(1.05)^3$ using binomial expansion.

Solution

$(1.05)^3 = (1 + 0.05)^3$

$= 1 + 3(0.05) + 3(0.05)^2 + (0.05)^3$

$= 1 + 0.15 + 3(0.0025) + 0.000125$

$= 1 + 0.15 + 0.0075 + 0.000125$

$= 1.157625$


Level 2: JEE Main Advanced

Problem 2.1: Find the approximate value of $(0.998)^{10}$ correct to four decimal places.

Solution

$(0.998)^{10} = (1 - 0.002)^{10}$

$\approx 1 + 10(-0.002) + \frac{10 \times 9}{2}(0.002)^2 + \frac{10 \times 9 \times 8}{6}(0.002)^3$

$= 1 - 0.02 + 45(0.000004) + 120(0.000000008)$

$= 1 - 0.02 + 0.00018 + 0.00000096$

$= 0.9802$ (to 4 decimal places)

Problem 2.2: Using binomial theorem, prove that $n! > \left(\frac{n}{e}\right)^n$ for $n \geq 1$.

Solution

Consider $(1 + 1/n)^n = 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \cdots$

$= 1 + 1 + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) + \cdots$

As $n \to \infty$: $(1 + 1/n)^n \to e$

For finite $n$: $(1 + 1/n)^n < e$, so $n < e^n \cdot n^n / n^n$…

(This requires Stirling’s approximation for complete proof)

Problem 2.3: Find $\sqrt[4]{17}$ approximately.

Solution

$\sqrt[4]{17} = (16 + 1)^{1/4} = 2(1 + 1/16)^{1/4}$

$\approx 2\left[1 + \frac{1}{4} \cdot \frac{1}{16}\right] = 2\left[1 + \frac{1}{64}\right] = 2.03125$

Exact: $\sqrt[4]{17} = 2.0305...$


Level 3: JEE Advanced

Problem 3.1: Show that for large $n$, $\left(1 + \frac{1}{n}\right)^n \approx e\left(1 - \frac{1}{2n}\right)$ where $e = 2.718...$

Solution

Using binomial expansion and taking logarithm:

$\ln\left[\left(1 + \frac{1}{n}\right)^n\right] = n\ln\left(1 + \frac{1}{n}\right)$

For small $x$: $\ln(1 + x) \approx x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$

$n\ln\left(1 + \frac{1}{n}\right) \approx n\left[\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} - \cdots\right]$

$= 1 - \frac{1}{2n} + \frac{1}{3n^2} - \cdots \approx 1 - \frac{1}{2n}$ for large $n$

Therefore: $\left(1 + \frac{1}{n}\right)^n \approx e^{1-1/(2n)} = e \cdot e^{-1/(2n)} \approx e\left(1 - \frac{1}{2n}\right)$

Problem 3.2: If $x$ is so small that $x^3$ and higher powers can be neglected, show that:

$$\frac{(1-x)^{3/2}}{(1+x)^{1/2}} \approx 1 - 2x$$
Solution

$(1-x)^{3/2} \approx 1 + \frac{3}{2}(-x) + \frac{3/2 \cdot 1/2}{2}(-x)^2$

$= 1 - \frac{3x}{2} + \frac{3x^2}{8}$

Neglecting $x^2$: $(1-x)^{3/2} \approx 1 - \frac{3x}{2}$

$(1+x)^{-1/2} \approx 1 + \left(-\frac{1}{2}\right)x = 1 - \frac{x}{2}$

Therefore: $\frac{(1-x)^{3/2}}{(1+x)^{1/2}} \approx \left(1 - \frac{3x}{2}\right)\left(1 - \frac{x}{2}\right)$

$= 1 - \frac{3x}{2} - \frac{x}{2} + \frac{3x^2}{4}$

Neglecting $x^2$: $\approx 1 - 2x$

Problem 3.3: Find the percentage error in taking $(0.997)^{1/3}$ as $1 - \frac{0.003}{3}$.

Solution

Approximation: $(0.997)^{1/3} \approx 1 - \frac{0.003}{3} = 1 - 0.001 = 0.999$

Better approximation: $(0.997)^{1/3} = (1 - 0.003)^{1/3}$

$\approx 1 + \frac{1}{3}(-0.003) + \frac{(1/3)(-2/3)}{2}(-0.003)^2$

$= 1 - 0.001 - \frac{1}{9}(0.000009)$

$= 1 - 0.001 - 0.000001 = 0.999999$

Percentage error $= \frac{0.999999 - 0.999}{0.999999} \times 100 \approx 0.0001\%$

The error is negligible!


Quick Reference Table

ExpressionApproximation (small $x$)
$(1 + x)^n$$1 + nx$
$(1 - x)^n$$1 - nx$
$\sqrt{1 + x}$$1 + \frac{x}{2}$
$\sqrt[3]{1 + x}$$1 + \frac{x}{3}$
$\frac{1}{1 + x}$$1 - x$
$\frac{1}{\sqrt{1 + x}}$$1 - \frac{x}{2}$
$\frac{1}{(1 + x)^2}$$1 - 2x$

Cross-References


Quick Revision Points

  1. Use binomial approximation only for $|x| \ll 1$
  2. First-order: Keep two terms
  3. Second-order: Keep three terms
  4. Always convert to $(1 + x)^n$ form
  5. Check sign carefully for $(1 - x)^n$
  6. Root formulas: power is $1/n$

Last updated: October 25, 2025