Properties of Binomial Coefficients

Complete guide to binomial coefficient properties, identities, and applications in JEE problems

Properties of Binomial Coefficients

Introduction

Binomial coefficients are the numerical coefficients in the expansion of $(a + b)^n$, denoted by $\binom{n}{r}$ or ${}^nC_r$. They have remarkable properties that simplify many algebraic calculations.


Interactive Demo: Pascal’s Triangle

Build Pascal's Triangle

Each number is the sum of the two numbers above it. This visualizes Pascal's Identity: C(n,r) = C(n-1,r-1) + C(n-1,r)


Definition

$$\boxed{\binom{n}{r} = {}^nC_r = \frac{n!}{r!(n-r)!}}$$

where $0 \leq r \leq n$ and $n, r$ are non-negative integers.

Special Cases:

  • $\binom{n}{0} = 1$
  • $\binom{n}{n} = 1$
  • $\binom{n}{1} = n$
  • $\binom{n}{n-1} = n$

Fundamental Properties

Interactive Demo: Visualize Coefficient Properties

Explore properties like symmetry through Pascal’s Triangle.

Property 1: Symmetry Property

$$\boxed{\binom{n}{r} = \binom{n}{n-r}}$$

Proof:

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)![n-(n-r)]!} = \binom{n}{n-r}$$

Example: $\binom{10}{3} = \binom{10}{7} = 120$


Property 2: Pascal’s Identity

$$\boxed{\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}}$$

Proof:

$$\begin{align} \binom{n-1}{r-1} + \binom{n-1}{r} &= \frac{(n-1)!}{(r-1)!(n-r)!} + \frac{(n-1)!}{r!(n-r-1)!} \\ &= \frac{(n-1)!}{(r-1)!(n-r-1)!}\left[\frac{1}{n-r} + \frac{1}{r}\right] \\ &= \frac{(n-1)!}{(r-1)!(n-r-1)!} \cdot \frac{n}{r(n-r)} \\ &= \frac{n!}{r!(n-r)!} = \binom{n}{r} \end{align}$$

This property generates Pascal’s Triangle.


Property 3: Sum of All Binomial Coefficients

$$\boxed{\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n}$$

Proof: Put $a = b = 1$ in $(a+b)^n$:

$$(1+1)^n = \sum_{r=0}^{n}\binom{n}{r} = 2^n$$

Example: $\binom{5}{0} + \binom{5}{1} + \binom{5}{2} + \binom{5}{3} + \binom{5}{4} + \binom{5}{5} = 1+5+10+10+5+1 = 32 = 2^5$


Property 4: Sum of Coefficients at Odd and Even Places

$$\boxed{\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots = 2^{n-1}}$$

Proof: Put $a = 1, b = -1$ in $(a+b)^n$:

$$(1-1)^n = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \cdots = 0$$

Let $E = \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots$ (even positions)

Let $O = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots$ (odd positions)

Then: $E - O = 0 \Rightarrow E = O$

And: $E + O = 2^n \Rightarrow 2E = 2^n \Rightarrow E = O = 2^{n-1}$


Property 5: Sum with Variable Powers

$$\boxed{\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \cdots + (-1)^n\binom{n}{n} = 0}$$

Proof: Put $x = -1$ in $(1+x)^n = \sum_{r=0}^{n}\binom{n}{r}x^r$


Property 6: Ratio of Consecutive Coefficients

$$\boxed{\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n-r+1}{r}}$$

Proof:

$$\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n!/(r!(n-r)!)}{n!/((r-1)!(n-r+1)!)} = \frac{(r-1)!(n-r+1)!}{r!(n-r)!} = \frac{n-r+1}{r}$$

Advanced Properties

Property 7: Sum of Products

$$\boxed{\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \cdots + \binom{n}{n}^2 = \binom{2n}{n}}$$

Proof: Consider $(1+x)^n \cdot (1+x)^n = (1+x)^{2n}$

Coefficient of $x^n$ on LHS = $\sum_{r=0}^{n}\binom{n}{r}\binom{n}{n-r} = \sum_{r=0}^{n}\binom{n}{r}^2$

Coefficient of $x^n$ on RHS = $\binom{2n}{n}$


Property 8: Sum with Index Multiplication

$$\boxed{\sum_{r=0}^{n} r \cdot \binom{n}{r} = n \cdot 2^{n-1}}$$

Proof:

$$\sum_{r=0}^{n} r \cdot \binom{n}{r} x^r = x\frac{d}{dx}[(1+x)^n] = x \cdot n(1+x)^{n-1}$$

Put $x = 1$: $\sum_{r=0}^{n} r \cdot \binom{n}{r} = n \cdot 2^{n-1}$


Property 9: Vandermonde’s Identity

$$\boxed{\sum_{r=0}^{k} \binom{m}{r}\binom{n}{k-r} = \binom{m+n}{k}}$$

This is the coefficient of $x^k$ in $(1+x)^m(1+x)^n = (1+x)^{m+n}$


Memory Tricks

🎯 Symmetry Memory

“Mirror Property”: $\binom{n}{r} = \binom{n}{n-r}$

  • Choosing $r$ items = Leaving $(n-r)$ items
  • Both are the same!

🎯 Pascal’s Triangle Builder

“Add the neighbors above”:

        1
      1   1
    1   2   1
  1   3   3   1
1   4   6   4   1

Each number = sum of two numbers directly above it.

🎯 Sum Formula Memory

“Power of 2 Rule”:

  • All coefficients sum: $2^n$
  • Even position sum = Odd position sum = $2^{n-1}$
  • Think: “Half the total”

🎯 Ratio Trick

“Top-Bottom Rule”: $\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n-r+1}{r}$

Mnemonic: “New Minus R plus 1, over R


Common Mistakes to Avoid

❌ Mistake 1: Wrong Symmetry Application

Wrong: $\binom{10}{3} = \binom{3}{10}$ ✗

Correct: $\binom{10}{3} = \binom{10}{10-3} = \binom{10}{7}$ ✓

Remember: Both $n$ values must be same in symmetry!

❌ Mistake 2: Pascal’s Identity Confusion

Wrong: $\binom{n}{r} = \binom{n}{r-1} + \binom{n}{r+1}$ ✗

Correct: $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$ ✓

Remember: Go to previous row (n-1), not same row!

❌ Mistake 3: Sum Calculation Error

Wrong: Sum of odd-positioned coefficients = $2^n$ ✗

Correct: Sum of odd-positioned OR even-positioned = $2^{n-1}$ ✓

❌ Mistake 4: Ratio Formula Misuse

Wrong: $\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{r}{n-r+1}$ ✗

Correct: $\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n-r+1}{r}$ ✓


Solved Examples

Example 1: Using Symmetry (JEE Main)

Evaluate: $\binom{20}{17} + \binom{20}{16}$

Solution: Using symmetry: $\binom{20}{17} = \binom{20}{3}$ and $\binom{20}{16} = \binom{20}{4}$

$$\begin{align} \binom{20}{3} + \binom{20}{4} &= \frac{20 \times 19 \times 18}{3 \times 2 \times 1} + \frac{20 \times 19 \times 18 \times 17}{4 \times 3 \times 2 \times 1} \\ &= 1140 + 4845 \\ &= 5985 \end{align}$$

Or using Pascal’s Identity: $\binom{20}{3} + \binom{20}{4} = \binom{21}{4} = 5985$


Example 2: Sum of Coefficients (JEE Main)

If the sum of coefficients in $(1 + x)^n$ is 1024, find $n$.

Solution: Sum of coefficients = $2^n = 1024 = 2^{10}$

Therefore, $n = 10$


Example 3: Odd/Even Position Sum (JEE Advanced)

In the expansion of $(1 + x)^{20}$, find the sum of coefficients of even powers of $x$.

Solution: Sum of coefficients at even powers = $2^{n-1} = 2^{20-1} = 2^{19} = 524288$


Example 4: Using Ratio Property (JEE Advanced)

In the expansion of $(1 + x)^n$, if the coefficient of 5th term is equal to the coefficient of 8th term, find $n$.

Solution: 5th term: $T_5 = \binom{n}{4}x^4$, coefficient = $\binom{n}{4}$

8th term: $T_8 = \binom{n}{7}x^7$, coefficient = $\binom{n}{7}$

Given: $\binom{n}{4} = \binom{n}{7}$

Using symmetry: $\binom{n}{4} = \binom{n}{n-4}$

So: $\binom{n}{7} = \binom{n}{n-4}$

Therefore: $7 = n - 4 \Rightarrow n = 11$


Example 5: Vandermonde’s Identity (JEE Advanced)

Prove: $\binom{2n}{0}\binom{2n}{2n} + \binom{2n}{1}\binom{2n}{2n-1} + \cdots + \binom{2n}{2n}\binom{2n}{0} = \binom{4n}{2n}$

Solution: Using Vandermonde’s Identity with $m = n = 2n$ and $k = 2n$:

$$\sum_{r=0}^{2n} \binom{2n}{r}\binom{2n}{2n-r} = \binom{4n}{2n}$$

But $\binom{2n}{2n-r} = \binom{2n}{r}$ (symmetry)

Therefore: $\sum_{r=0}^{2n} \binom{2n}{r}\binom{2n}{r} = \binom{4n}{2n}$

Hence proved.


Practice Problems

Level 1: JEE Main Basics

Problem 1.1: Evaluate $\binom{15}{12} + \binom{15}{13}$ using Pascal’s identity.

Solution

Using Pascal’s Identity: $\binom{n-1}{r-1} + \binom{n-1}{r} = \binom{n}{r}$

Here: $\binom{15}{12} + \binom{15}{13} = \binom{16}{13}$

Using symmetry: $\binom{16}{13} = \binom{16}{3} = \frac{16 \times 15 \times 14}{6} = 560$

Problem 1.2: Find the sum of all binomial coefficients in $(1 + 2x)^{10}$.

Solution

Put $x = 1$: $(1 + 2)^{10} = 3^{10} = 59049$

Note: This gives sum of all coefficients including the constant multipliers.

For just binomial coefficients $\binom{10}{r}$: Sum = $2^{10} = 1024$

Problem 1.3: If $\binom{n}{8} = \binom{n}{6}$, find $n$.

Solution

Using symmetry: $\binom{n}{r} = \binom{n}{n-r}$

So: $\binom{n}{8} = \binom{n}{n-8}$

Given: $\binom{n}{8} = \binom{n}{6}$

Therefore: $6 = n - 8 \Rightarrow n = 14$


Level 2: JEE Main Advanced

Problem 2.1: Prove that $\binom{n}{1} + 2\binom{n}{2} + 3\binom{n}{3} + \cdots + n\binom{n}{n} = n \cdot 2^{n-1}$.

Solution

We know: $r\binom{n}{r} = n\binom{n-1}{r-1}$

So: $\sum_{r=1}^{n} r\binom{n}{r} = n\sum_{r=1}^{n}\binom{n-1}{r-1}$

Let $k = r-1$, then when $r = 1, k = 0$ and when $r = n, k = n-1$:

$= n\sum_{k=0}^{n-1}\binom{n-1}{k} = n \cdot 2^{n-1}$

Problem 2.2: Find the value of $\binom{10}{0}\binom{10}{10} + \binom{10}{1}\binom{10}{9} + \cdots + \binom{10}{10}\binom{10}{0}$.

Solution

Using Property 7: $\sum_{r=0}^{n}\binom{n}{r}^2 = \binom{2n}{n}$

Here $n = 10$:

$\sum_{r=0}^{10}\binom{10}{r}\binom{10}{10-r} = \sum_{r=0}^{10}\binom{10}{r}^2 = \binom{20}{10}$

$= \frac{20!}{10! \cdot 10!} = 184756$

Problem 2.3: If $\binom{n}{r-1} = 36$, $\binom{n}{r} = 84$, and $\binom{n}{r+1} = 126$, find $n$ and $r$.

Solution

Using $\frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n-r+1}{r}$:

$\frac{84}{36} = \frac{n-r+1}{r} \Rightarrow \frac{7}{3} = \frac{n-r+1}{r}$

$\Rightarrow 7r = 3(n-r+1) \Rightarrow 7r = 3n - 3r + 3 \Rightarrow 10r = 3n + 3$ … (1)

Similarly: $\frac{\binom{n}{r+1}}{\binom{n}{r}} = \frac{n-r}{r+1}$:

$\frac{126}{84} = \frac{n-r}{r+1} \Rightarrow \frac{3}{2} = \frac{n-r}{r+1}$

$\Rightarrow 3(r+1) = 2(n-r) \Rightarrow 3r + 3 = 2n - 2r \Rightarrow 5r = 2n - 3$ … (2)

From (1): $n = \frac{10r - 3}{3}$

Substitute in (2): $5r = 2 \cdot \frac{10r - 3}{3} - 3$

$15r = 20r - 6 - 9 \Rightarrow 5r = 15 \Rightarrow r = 3$

From (2): $n = \frac{5(3) + 3}{2} = 9$

Therefore: $n = 9, r = 3$


Level 3: JEE Advanced

Problem 3.1: Prove that $\sum_{r=0}^{n} \frac{\binom{n}{r}}{r+1} = \frac{2^{n+1} - 1}{n+1}$.

Solution

We know: $(1+x)^n = \sum_{r=0}^{n}\binom{n}{r}x^r$

Integrate both sides from 0 to 1:

$\int_0^1 (1+x)^n dx = \sum_{r=0}^{n}\binom{n}{r}\int_0^1 x^r dx$

$\left[\frac{(1+x)^{n+1}}{n+1}\right]_0^1 = \sum_{r=0}^{n}\binom{n}{r}\left[\frac{x^{r+1}}{r+1}\right]_0^1$

$\frac{2^{n+1} - 1}{n+1} = \sum_{r=0}^{n}\frac{\binom{n}{r}}{r+1}$

Problem 3.2: Show that $\binom{n}{0}^2 - \binom{n}{1}^2 + \binom{n}{2}^2 - \cdots + (-1)^n\binom{n}{n}^2 = \begin{cases}0 & \text{if } n \text{ is odd} \\ (-1)^{n/2}\binom{n}{n/2} & \text{if } n \text{ is even}\end{cases}$

Solution

Consider $(1+x)^n(1-x)^n = (1-x^2)^n$

Coefficient of $x^n$ on LHS:

$\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r}\binom{n}{n-r} = (-1)^n\sum_{r=0}^{n}(-1)^r\binom{n}{r}^2$

Coefficient of $x^n$ on RHS from $(1-x^2)^n = \sum_{k=0}^{n}\binom{n}{k}(-x^2)^k$:

For $x^n$: need $2k = n$, so $k = n/2$ (only if $n$ is even)

If $n$ odd: coefficient = 0

If $n$ even: coefficient = $\binom{n}{n/2}(-1)^{n/2}$

Therefore: $(-1)^n\sum_{r=0}^{n}(-1)^r\binom{n}{r}^2 = \begin{cases}0 & n \text{ odd} \\ (-1)^{n/2}\binom{n}{n/2} & n \text{ even}\end{cases}$

Hence: $\sum_{r=0}^{n}(-1)^r\binom{n}{r}^2 = \begin{cases}0 & n \text{ odd} \\ (-1)^{n/2}\binom{n}{n/2} & n \text{ even}\end{cases}$

Problem 3.3: Prove: $\sum_{r=0}^{n} r^2 \binom{n}{r} = n(n+1)2^{n-2}$.

Solution

We know: $r\binom{n}{r} = n\binom{n-1}{r-1}$

So: $r^2\binom{n}{r} = rn\binom{n-1}{r-1} = n(r-1+1)\binom{n-1}{r-1}$

$= n(r-1)\binom{n-1}{r-1} + n\binom{n-1}{r-1}$

$= n(n-1)\binom{n-2}{r-2} + n\binom{n-1}{r-1}$

Therefore: $\sum_{r=0}^{n}r^2\binom{n}{r} = n(n-1)\sum_{r=0}^{n}\binom{n-2}{r-2} + n\sum_{r=0}^{n}\binom{n-1}{r-1}$

$= n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1}$

$= n \cdot 2^{n-2}[(n-1) + 2]$

$= n(n+1)2^{n-2}$


Important Identities Summary

IdentityFormula
Symmetry$\binom{n}{r} = \binom{n}{n-r}$
Pascal’s$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$
Sum of all$\sum_{r=0}^{n}\binom{n}{r} = 2^n$
Odd/Even sum$\sum_{r=0,2,4,\ldots}\binom{n}{r} = 2^{n-1}$
Alternating sum$\sum_{r=0}^{n}(-1)^r\binom{n}{r} = 0$
Squares sum$\sum_{r=0}^{n}\binom{n}{r}^2 = \binom{2n}{n}$
Weighted sum$\sum_{r=0}^{n}r\binom{n}{r} = n \cdot 2^{n-1}$
Vandermonde$\sum_{r=0}^{k}\binom{m}{r}\binom{n}{k-r} = \binom{m+n}{k}$

Cross-References


Quick Revision Checklist

  • Symmetry property mastered
  • Pascal’s identity understood
  • Can calculate sum of all coefficients
  • Know odd/even position sums
  • Memorized ratio of consecutive coefficients
  • Understand Vandermonde’s identity
  • Practice with weighted sums

Last updated: October 22, 2025