Binomial Theorem for Positive Integer

Complete guide to binomial expansion for positive integral index with formulas, properties, and JEE problems

Binomial Theorem for Positive Integer

Introduction

The Binomial Theorem provides a formula for expanding $(a + b)^n$ where $n$ is a positive integer. This theorem is fundamental in algebra and has numerous applications in JEE problems.


Binomial Theorem Statement

Binomial Theorem: For any positive integer $n$,

$$\boxed{(a + b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \cdots + \binom{n}{n}b^n}$$

Or equivalently,

$$\boxed{(a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r}$$

where $\binom{n}{r} = \frac{n!}{r!(n-r)!} = {}^nC_r$


Key Properties

1. Number of Terms

  • The expansion of $(a + b)^n$ has exactly $(n + 1)$ terms

2. Powers in Each Term

$$\boxed{\text{Sum of powers of } a \text{ and } b \text{ in each term} = n}$$

3. Binomial Coefficients

The coefficients $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n}$ are called binomial coefficients.


Important Forms

Form 1: $(1 + x)^n$

$$\boxed{(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots + x^n}$$

Form 2: $(1 - x)^n$

$$\boxed{(1 - x)^n = 1 - nx + \frac{n(n-1)}{2!}x^2 - \frac{n(n-1)(n-2)}{3!}x^3 + \cdots + (-1)^n x^n}$$

Form 3: $(x + a)^n$

$$\boxed{(x + a)^n = x^n + nx^{n-1}a + \frac{n(n-1)}{2!}x^{n-2}a^2 + \cdots + a^n}$$

Memory Tricks

🎯 Pascal’s Triangle Method

Interactive Demo: Visualize Pascal’s Triangle

Explore binomial coefficients through Pascal’s Triangle visualization.

Remember the coefficients using Pascal’s Triangle:

n=0:                1
n=1:              1   1
n=2:            1   2   1
n=3:          1   3   3   1
n=4:        1   4   6   4   1
n=5:      1   5  10  10   5   1

Each number is the sum of the two numbers directly above it.

🎯 Power Pattern

“Powers go opposite ways”

  • Power of first term: decreases from $n$ to $0$
  • Power of second term: increases from $0$ to $n$
  • Remember: “Down-Up” pattern

🎯 Coefficient Formula

“nCr = n Choose r”

  • Start with $n$ on top
  • $r$ items in the denominator on right
  • $(n-r)$ items on left
  • Example: $\binom{5}{2} = \frac{5 \times 4}{2 \times 1}$

Common Mistakes to Avoid

❌ Mistake 1: Forgetting the Factorial Division

Wrong: $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$ ✗ (coefficients are wrong)

Correct: Use $\binom{3}{r}$ for coefficients:

  • $\binom{3}{0} = 1$, $\binom{3}{1} = 3$, $\binom{3}{2} = 3$, $\binom{3}{3} = 1$

❌ Mistake 2: Sign Errors in $(a - b)^n$

Wrong: $(x - 2)^3 = x^3 - 3x^2(2) - 3x(4) - 8$ ✗

Correct: $(x - 2)^3 = x^3 + 3x^2(-2) + 3x(-2)^2 + (-2)^3$ $= x^3 - 6x^2 + 12x - 8$ ✓

Tip: Replace $b$ with $(-b)$ and apply the theorem.

❌ Mistake 3: Power Sum Not Equal to $n$

Wrong: In $(x + y)^5$, term $x^3y^3$ exists ✗

Correct: Sum of powers must be 5, so $x^3y^3$ (sum = 6) doesn’t exist ✓

❌ Mistake 4: Incorrect Coefficient Calculation

Wrong: $\binom{6}{2} = 6 \times 2 = 12$ ✗

Correct: $\binom{6}{2} = \frac{6!}{2!4!} = \frac{6 \times 5}{2 \times 1} = 15$ ✓


Solved Examples

Example 1: Basic Expansion (JEE Main Level)

Expand $(2x + 3y)^4$ using binomial theorem.

Solution: Using $(a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r$

Here $a = 2x$, $b = 3y$, $n = 4$

$$\begin{align} (2x + 3y)^4 &= \binom{4}{0}(2x)^4 + \binom{4}{1}(2x)^3(3y) + \binom{4}{2}(2x)^2(3y)^2 \\ &\quad + \binom{4}{3}(2x)(3y)^3 + \binom{4}{4}(3y)^4 \\ &= 1(16x^4) + 4(8x^3)(3y) + 6(4x^2)(9y^2) \\ &\quad + 4(2x)(27y^3) + 1(81y^4) \\ &= 16x^4 + 96x^3y + 216x^2y^2 + 216xy^3 + 81y^4 \end{align}$$

Example 2: Finding Specific Term (JEE Main Level)

Find the coefficient of $x^5$ in the expansion of $(2 + 3x)^7$.

Solution: General term: $T_{r+1} = \binom{7}{r}(2)^{7-r}(3x)^r = \binom{7}{r}2^{7-r}3^r x^r$

For term containing $x^5$: $r = 5$

$$\begin{align} T_6 &= \binom{7}{5}(2)^{2}(3)^5 x^5 \\ &= 21 \times 4 \times 243 \times x^5 \\ &= 20412x^5 \end{align}$$

Coefficient of $x^5$ = 20412


Example 3: Numerical Calculation (JEE Advanced Level)

Using binomial theorem, find the value of $(1.01)^5$ correct to 4 decimal places.

Solution: $(1.01)^5 = (1 + 0.01)^5$

$$\begin{align} (1 + x)^5 &= 1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5 \end{align}$$

Substituting $x = 0.01$:

$$\begin{align} (1.01)^5 &= 1 + 5(0.01) + 10(0.01)^2 + 10(0.01)^3 + 5(0.01)^4 + (0.01)^5 \\ &= 1 + 0.05 + 0.001 + 0.00001 + 0.0000005 + 0.00000001 \\ &= 1.0510 \text{ (correct to 4 decimal places)} \end{align}$$

Practice Problems

Level 1: JEE Main Basics

Problem 1.1: Expand $(x + 2)^5$ using binomial theorem.

Solution$$\begin{align} (x + 2)^5 &= x^5 + 5x^4(2) + 10x^3(4) + 10x^2(8) + 5x(16) + 32 \\ &= x^5 + 10x^4 + 40x^3 + 80x^2 + 80x + 32 \end{align}$$

Problem 1.2: Find the number of terms in the expansion of $(3x - 2y)^{10}$.

Solution

Number of terms = $n + 1 = 10 + 1 = 11$

Problem 1.3: Write the general term in the expansion of $(a + b)^{12}$.

Solution

General term: $T_{r+1} = \binom{12}{r}a^{12-r}b^r$ where $r = 0, 1, 2, \ldots, 12$


Level 2: JEE Main Advanced

Problem 2.1: Find the coefficient of $x^6$ in the expansion of $(1 + 2x)^{10}$.

Solution

$T_{r+1} = \binom{10}{r}(2x)^r = \binom{10}{r}2^r x^r$

For $x^6$: $r = 6$

Coefficient $= \binom{10}{6}2^6 = 210 \times 64 = 13440$

Problem 2.2: If the coefficients of $x^7$ and $x^8$ in $(2 + x/3)^n$ are equal, find $n$.

Solution

Coefficient of $x^7$: $\binom{n}{7}2^{n-7}\left(\frac{1}{3}\right)^7$

Coefficient of $x^8$: $\binom{n}{8}2^{n-8}\left(\frac{1}{3}\right)^8$

Setting them equal:

$$\binom{n}{7}2^{n-7} \cdot 3^{-7} = \binom{n}{8}2^{n-8} \cdot 3^{-8}$$ $$\frac{n!}{7!(n-7)!} \cdot 2 = \frac{n!}{8!(n-8)!} \cdot 3$$ $$\frac{8}{n-7} \cdot 2 = 3$$ $$16 = 3(n - 7)$$ $$n = \frac{16}{3} + 7 = \frac{37}{3}$$

Wait, this should give integer. Let me recalculate:

$$\binom{n}{7} \cdot 2 \cdot 3 = \binom{n}{8}$$ $$\frac{n!}{7!(n-7)!} \cdot 6 = \frac{n!}{8!(n-8)!}$$ $$\frac{8!}{7!} \cdot \frac{(n-8)!}{(n-7)!} = \frac{1}{6}$$ $$8 \cdot \frac{1}{n-7} = \frac{1}{6}$$ $$n - 7 = 48$$

, so $n = 55$

Problem 2.3: Calculate $(0.99)^6$ using binomial theorem (up to 4 decimal places).

Solution

$(0.99)^6 = (1 - 0.01)^6$

$= 1 - 6(0.01) + 15(0.01)^2 - 20(0.01)^3 + \ldots$

$= 1 - 0.06 + 0.0015 - 0.00002 + \ldots$

$= 0.9415$ (to 4 decimal places)


Level 3: JEE Advanced

Problem 3.1: Find the term independent of $x$ in the expansion of $\left(2x^2 - \frac{1}{x}\right)^{12}$.

Solution

General term: $T_{r+1} = \binom{12}{r}(2x^2)^{12-r}\left(-\frac{1}{x}\right)^r$

$= \binom{12}{r}2^{12-r}(-1)^r x^{24-2r-r}$

$= \binom{12}{r}2^{12-r}(-1)^r x^{24-3r}$

For term independent of $x$: $24 - 3r = 0 \Rightarrow r = 8$

$T_9 = \binom{12}{8}2^4(-1)^8 = 495 \times 16 \times 1 = 7920$

Problem 3.2: If the sum of coefficients in the expansion of $(x + y)^n$ is 4096, find the greatest coefficient.

Solution

Sum of coefficients = Put $x = y = 1$: $(1 + 1)^n = 2^n = 4096$

So $n = 12$

For $(x + y)^{12}$, greatest coefficient is the middle one: $\binom{12}{6} = 924$

Problem 3.3: Prove that $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n$.

Solution

Consider $(1 + 1)^n = \sum_{r=0}^{n}\binom{n}{r}(1)^{n-r}(1)^r = \sum_{r=0}^{n}\binom{n}{r}$

Therefore, $\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n} = 2^n$


Cross-References


Quick Revision Points

  1. $(a + b)^n$ has $(n + 1)$ terms
  2. General term: $T_{r+1} = \binom{n}{r}a^{n-r}b^r$
  3. Sum of powers in each term = $n$
  4. For $(1 + x)^n$: Put $a = 1, b = x$
  5. For $(1 - x)^n$: Replace $x$ with $-x$
  6. Pascal’s Triangle gives binomial coefficients
  7. Sum of all coefficients: Put $a = b = 1$

Last updated: October 15, 2025