General Term and Middle Term in Binomial Expansion

Master the general term formula, middle term, and term finding techniques for JEE

General Term and Middle Term

General Term Formula

The general term (also called the $(r+1)^{\text{th}}$ term) in the expansion of $(a + b)^n$ is:

$$\boxed{T_{r+1} = \binom{n}{r} a^{n-r} b^r}$$

where $r = 0, 1, 2, \ldots, n$

Key Points

  • $T_{r+1}$ represents the $(r+1)^{\text{th}}$ term
  • $r$ is the index starting from 0
  • First term: $T_1$ when $r = 0$
  • Last term: $T_{n+1}$ when $r = n$

General Term in Different Forms

Form 1: $(x + a)^n$

$$\boxed{T_{r+1} = \binom{n}{r} x^{n-r} a^r}$$

Form 2: $(1 + x)^n$

$$\boxed{T_{r+1} = \binom{n}{r} x^r}$$

Form 3: $(ax + b)^n$

$$\boxed{T_{r+1} = \binom{n}{r} (ax)^{n-r} b^r = \binom{n}{r} a^{n-r} b^r x^{n-r}}$$

Form 4: $\left(x + \frac{1}{x}\right)^n$

$$\boxed{T_{r+1} = \binom{n}{r} x^{n-r} \cdot x^{-r} = \binom{n}{r} x^{n-2r}}$$

Middle Term(s)

The middle term(s) depend on whether $n$ is even or odd.

Case 1: When $n$ is Even

Single Middle Term: $T_{\frac{n}{2} + 1}$ (the $\left(\frac{n}{2} + 1\right)^{\text{th}}$ term)

$$\boxed{T_{\frac{n}{2}+1} = \binom{n}{n/2} a^{n/2} b^{n/2}}$$

Example: In $(a + b)^6$, middle term is $T_4$ (when $r = 3$)

Interactive Demo: Visualize Binomial Coefficients

See how coefficients relate to Pascal’s Triangle positions.

Case 2: When $n$ is Odd

Two Middle Terms: $T_{\frac{n+1}{2}}$ and $T_{\frac{n+3}{2}}$

$$\boxed{T_{\frac{n+1}{2}} = \binom{n}{(n-1)/2} a^{(n+1)/2} b^{(n-1)/2}}$$ $$\boxed{T_{\frac{n+3}{2}} = \binom{n}{(n+1)/2} a^{(n-1)/2} b^{(n+1)/2}}$$

Example: In $(a + b)^7$, middle terms are $T_4$ and $T_5$ (when $r = 3$ and $r = 4$)


Memory Tricks

🎯 General Term Index

“r+1 Rule”: The $(r+1)^{\text{th}}$ term has:

  • Binomial coefficient: $\binom{n}{r}$
  • First quantity’s power: $n - r$
  • Second quantity’s power: $r$

Mnemonic: “Name Remains, R Goes Up”

  • $n$ stays in $\binom{n}{r}$
  • $r$ increases from 0 to $n$
  • Powers of second term go up

🎯 Middle Term Quick Find

Even $n$: Middle position = $\frac{n}{2} + 1$

  • For $n = 6$: Position = $3 + 1 = 4$ (4th term)

Odd $n$: Two middles at $\frac{n+1}{2}$ and $\frac{n+1}{2} + 1$

  • For $n = 7$: Positions = $4$ and $5$ (4th and 5th terms)

🎯 Independent Term Finder

“Power Sum = 0”: For term independent of $x$ in $\left(x^a + \frac{b}{x^c}\right)^n$:

  • General term power: $a(n-r) - cr$
  • Set equal to 0: $a(n-r) - cr = 0$
  • Solve for $r$

Common Mistakes to Avoid

❌ Mistake 1: Confusing $r$ and Term Number

Wrong: “5th term means $r = 5$” ✗

Correct: “5th term means $T_5$, so $r = 4$” ✓

Remember: Term number = $r + 1$

❌ Mistake 2: Wrong Middle Term for Odd $n$

Wrong: For $(x + y)^9$, middle term is $T_5$ ✗

Correct: For $(x + y)^9$, there are TWO middle terms: $T_5$ and $T_6$ ✓

❌ Mistake 3: Power Calculation Error

Wrong: In $\left(2x^2 - \frac{3}{x}\right)^{10}$, power of $x$ in $T_{r+1}$ is $2r - 1$ ✗

Correct: $T_{r+1} = \binom{10}{r}(2x^2)^{10-r}\left(-\frac{3}{x}\right)^r$

Power of $x = 2(10-r) - r = 20 - 3r$ ✓

❌ Mistake 4: Sign Error in Negative Terms

Wrong: In $(x - 2y)^5$, $T_3 = \binom{5}{2}x^3(2y)^2$ ✗

Correct: $T_3 = \binom{5}{2}x^3(-2y)^2 = 10x^3 \cdot 4y^2 = 40x^3y^2$ ✓

Remember: Include the sign when raising to power!


Solved Examples

Example 1: Finding Specific Term (JEE Main)

Find the 7th term in the expansion of $(3x - 2y)^{10}$.

Solution: For 7th term: $T_7 = T_{6+1}$, so $r = 6$

$$\begin{align} T_7 &= \binom{10}{6}(3x)^{10-6}(-2y)^6 \\ &= \binom{10}{6}(3x)^4(64y^6) \\ &= 210 \times 81x^4 \times 64y^6 \\ &= 1088640x^4y^6 \end{align}$$

Example 2: Middle Term (JEE Main)

Find the middle term in the expansion of $(2x - 3y)^8$.

Solution: Since $n = 8$ (even), there is ONE middle term.

Middle term = $T_{\frac{8}{2}+1} = T_5$ (when $r = 4$)

$$\begin{align} T_5 &= \binom{8}{4}(2x)^{8-4}(-3y)^4 \\ &= 70 \times 16x^4 \times 81y^4 \\ &= 90720x^4y^4 \end{align}$$

Example 3: Term Independent of $x$ (JEE Advanced)

Find the term independent of $x$ in $\left(3x^2 - \frac{2}{x^3}\right)^{10}$.

Solution: General term:

$$T_{r+1} = \binom{10}{r}(3x^2)^{10-r}\left(-\frac{2}{x^3}\right)^r$$ $$= \binom{10}{r} \cdot 3^{10-r} \cdot (-2)^r \cdot x^{2(10-r)-3r}$$ $$= \binom{10}{r} \cdot 3^{10-r} \cdot (-2)^r \cdot x^{20-5r}$$

For term independent of $x$: $20 - 5r = 0$

$\Rightarrow r = 4$

$$\begin{align} T_5 &= \binom{10}{4} \cdot 3^6 \cdot (-2)^4 \\ &= 210 \times 729 \times 16 \\ &= 2449440 \end{align}$$

Example 4: Coefficient of Specific Power (JEE Advanced)

Find the coefficient of $x^{-5}$ in the expansion of $\left(x - \frac{1}{x^2}\right)^{11}$.

Solution: General term:

$$T_{r+1} = \binom{11}{r}(x)^{11-r}\left(-\frac{1}{x^2}\right)^r$$ $$= \binom{11}{r}(-1)^r x^{11-r-2r} = \binom{11}{r}(-1)^r x^{11-3r}$$

For $x^{-5}$: $11 - 3r = -5$

$\Rightarrow 3r = 16$

$\Rightarrow r = \frac{16}{3}$ (not an integer!)

Therefore, there is NO term containing $x^{-5}$. Coefficient = 0.


Example 5: Middle Terms in Odd Power (JEE Main)

Find both middle terms in the expansion of $\left(x + \frac{2}{x}\right)^7$.

Solution: Since $n = 7$ (odd), there are TWO middle terms.

First middle term: $T_{\frac{7+1}{2}} = T_4$ (when $r = 3$)

$$\begin{align} T_4 &= \binom{7}{3}(x)^{7-3}\left(\frac{2}{x}\right)^3 \\ &= 35 \times x^4 \times \frac{8}{x^3} \\ &= 280x \end{align}$$

Second middle term: $T_{\frac{7+3}{2}} = T_5$ (when $r = 4$)

$$\begin{align} T_5 &= \binom{7}{4}(x)^{7-4}\left(\frac{2}{x}\right)^4 \\ &= 35 \times x^3 \times \frac{16}{x^4} \\ &= \frac{560}{x} \end{align}$$

Practice Problems

Level 1: JEE Main Basics

Problem 1.1: Find the 5th term in $(2a + b)^8$.

Solution

$T_5 = T_{4+1}$, so $r = 4$

$$T_5 = \binom{8}{4}(2a)^4(b)^4 = 70 \times 16a^4 \times b^4 = 1120a^4b^4$$

Problem 1.2: Find the middle term in $(x + 2y)^6$.

Solution

$n = 6$ (even), middle term = $T_4$ ($r = 3$)

$$T_4 = \binom{6}{3}(x)^3(2y)^3 = 20 \times x^3 \times 8y^3 = 160x^3y^3$$

Problem 1.3: Write the general term of $\left(x - \frac{1}{x}\right)^{12}$.

Solution$$T_{r+1} = \binom{12}{r}(x)^{12-r}\left(-\frac{1}{x}\right)^r = \binom{12}{r}(-1)^r x^{12-2r}$$

Level 2: JEE Main Advanced

Problem 2.1: Find the term independent of $x$ in $\left(x^2 - \frac{3}{x}\right)^9$.

Solution

General term: $T_{r+1} = \binom{9}{r}(x^2)^{9-r}\left(-\frac{3}{x}\right)^r = \binom{9}{r}(-3)^r x^{18-3r}$

For independence: $18 - 3r = 0 \Rightarrow r = 6$

$$T_7 = \binom{9}{6}(-3)^6 = 84 \times 729 = 61236$$

Problem 2.2: If the coefficients of $(r-1)^{\text{th}}$, $r^{\text{th}}$, and $(r+1)^{\text{th}}$ terms in $(1+x)^{20}$ are in AP, find $r$.

Solution

Coefficients are: $\binom{20}{r-2}$, $\binom{20}{r-1}$, $\binom{20}{r}$

In AP: $2\binom{20}{r-1} = \binom{20}{r-2} + \binom{20}{r}$

Using $\binom{n}{r-1} + \binom{n}{r} = \binom{n+1}{r}$:

$2\binom{20}{r-1} = \binom{20}{r-2} + \binom{20}{r}$

After calculation: $r = 7$ or $r = 14$

Problem 2.3: Find the ratio of the 5th term to the 4th term in $(3x + 2y)^{10}$.

Solution$$\frac{T_5}{T_4} = \frac{\binom{10}{4}(3x)^6(2y)^4}{\binom{10}{3}(3x)^7(2y)^3}$$ $$= \frac{\binom{10}{4}}{\binom{10}{3}} \times \frac{(3x)^6}{(3x)^7} \times \frac{(2y)^4}{(2y)^3}$$ $$= \frac{10!/(4!6!)}{10!/(3!7!)} \times \frac{1}{3x} \times 2y$$ $$= \frac{7}{4} \times \frac{2y}{3x} = \frac{7y}{6x}$$

Level 3: JEE Advanced

Problem 3.1: Find the greatest term numerically in the expansion of $(3 - 5x)^{15}$ when $x = 1/5$.

Solution

For greatest term, use: $\frac{T_{r+1}}{T_r} = \frac{(n-r+1)|b|}{r|a|}$

Here $a = 3$, $b = -5x = -1$, $n = 15$

$\frac{T_{r+1}}{T_r} = \frac{(16-r) \times 1}{r \times 3} = \frac{16-r}{3r}$

For greatest term: $\frac{16-r}{3r} \geq 1$ and $\frac{16-(r+1)}{3(r+1)} < 1$

From first: $16 - r \geq 3r \Rightarrow r \leq 4$

So greatest term is $T_5$ or check ratio.

Calculate $T_4$ and $T_5$ and compare numerically.

Problem 3.2: If the 3rd term in $(x^{\alpha} + x^{-\beta})^n$ is independent of $x$, express $\alpha$ in terms of $\beta$ and $n$.

Solution

3rd term: $T_3 = T_{2+1}$, so $r = 2$

$$T_3 = \binom{n}{2}(x^{\alpha})^{n-2}(x^{-\beta})^2 = \binom{n}{2}x^{\alpha(n-2)-2\beta}$$

For independence: $\alpha(n-2) - 2\beta = 0$

$$\alpha = \frac{2\beta}{n-2}$$

Problem 3.3: Show that the middle term in $(1 + x)^{2n}$ is $\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{n!} \cdot 2^n \cdot x^n$.

Solution

Middle term when power is $2n$ (even): $T_{n+1}$ (where $r = n$)

$$T_{n+1} = \binom{2n}{n}x^n = \frac{(2n)!}{n! \cdot n!}x^n$$ $$= \frac{2n \cdot (2n-1) \cdot (2n-2) \cdots 2 \cdot 1}{n! \cdot n!}x^n$$ $$= \frac{[2 \cdot 4 \cdot 6 \cdots (2n)] \cdot [1 \cdot 3 \cdot 5 \cdots (2n-1)]}{(n!)^2}x^n$$ $$= \frac{2^n \cdot n! \cdot [1 \cdot 3 \cdot 5 \cdots (2n-1)]}{(n!)^2}x^n$$ $$= \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{n!} \cdot 2^n \cdot x^n$$

Important Results Summary

PropertyFormula
General Term$T_{r+1} = \binom{n}{r}a^{n-r}b^r$
Middle Term ($n$ even)$T_{\frac{n}{2}+1}$
Middle Terms ($n$ odd)$T_{\frac{n+1}{2}}$ and $T_{\frac{n+3}{2}}$
Term number from end$T_r$ from end = $T_{n-r+2}$ from start
Greatest coefficient$\binom{n}{n/2}$ if $n$ even, $\binom{n}{(n-1)/2}$ or $\binom{n}{(n+1)/2}$ if $n$ odd

Cross-References


Quick Revision Checklist

  • General term formula memorized
  • Can find middle term for even and odd $n$
  • Know how to find term independent of variable
  • Understand relationship between $r$ and term number
  • Can handle fractional/negative powers
  • Practice finding specific coefficients

Last updated: October 18, 2025