Multinomial Theorem - Advanced Topic

Advanced expansion using multinomial theorem for JEE Advanced preparation

Multinomial Theorem (Advanced)

Introduction

The Multinomial Theorem is a generalization of the Binomial Theorem. While binomial theorem deals with expansion of $(a + b)^n$, multinomial theorem expands $(x_1 + x_2 + x_3 + \cdots + x_k)^n$.

This is an advanced topic primarily for JEE Advanced and olympiad-level problems.


Multinomial Theorem Statement

Multinomial Theorem: For positive integer $n$ and any $k$ variables:

$$\boxed{(x_1 + x_2 + \cdots + x_k)^n = \sum \frac{n!}{n_1! n_2! \cdots n_k!} x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}}$$

where the sum is taken over all non-negative integers $n_1, n_2, \ldots, n_k$ such that:

$$n_1 + n_2 + \cdots + n_k = n$$

Interactive Demo: Visualize Multinomial Patterns

Explore how multinomial coefficients extend Pascal’s Triangle.


Multinomial Coefficient

The coefficient $\frac{n!}{n_1! n_2! \cdots n_k!}$ is called the multinomial coefficient, denoted:

$$\boxed{\binom{n}{n_1, n_2, \ldots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}}$$

Special Cases:

  • When $k = 2$: $\binom{n}{n_1, n_2} = \binom{n}{n_1} = \frac{n!}{n_1! n_2!}$ (Binomial coefficient)
  • When $k = 3$: $\binom{n}{n_1, n_2, n_3} = \frac{n!}{n_1! n_2! n_3!}$ (Trinomial coefficient)

Trinomial Expansion

The most common case after binomial is trinomial expansion:

$$\boxed{(a + b + c)^n = \sum_{p+q+r=n} \frac{n!}{p! q! r!} a^p b^q c^r}$$

where $p, q, r \geq 0$ and $p + q + r = n$.

Example: $(a + b + c)^2$

$$\begin{align} (a + b + c)^2 &= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \end{align}$$

Using multinomial theorem:

  • Term $a^2$: $\frac{2!}{2!0!0!}a^2 = 1 \cdot a^2$
  • Term $b^2$: $\frac{2!}{0!2!0!}b^2 = 1 \cdot b^2$
  • Term $c^2$: $\frac{2!}{0!0!2!}c^2 = 1 \cdot c^2$
  • Term $ab$: $\frac{2!}{1!1!0!}ab = 2ab$
  • Term $bc$: $\frac{2!}{0!1!1!}bc = 2bc$
  • Term $ca$: $\frac{2!}{1!0!1!}ca = 2ca$

Number of Terms

Formula for Number of Terms

In the expansion of $(x_1 + x_2 + \cdots + x_k)^n$:

$$\boxed{\text{Number of terms} = \binom{n + k - 1}{k - 1} = \binom{n + k - 1}{n}}$$

Derivation: This is equivalent to finding the number of non-negative integer solutions to:

$$n_1 + n_2 + \cdots + n_k = n$$

which is a classic “stars and bars” problem.

Examples

  1. $(a + b + c)^{10}$: Number of terms = $\binom{10+3-1}{3-1} = \binom{12}{2} = 66$

  2. $(x + y + z + w)^5$: Number of terms = $\binom{5+4-1}{4-1} = \binom{8}{3} = 56$


General Term in Trinomial

For $(x + y + z)^n$, the general term is:

$$\boxed{T_{p,q,r} = \frac{n!}{p! q! r!} x^p y^q z^r}$$

where $p + q + r = n$ and $p, q, r \geq 0$.


Finding Specific Terms

Method 1: Direct Substitution

To find coefficient of $x^a y^b z^c$ in $(x + y + z)^n$:

  1. Check if $a + b + c = n$
  2. If yes, coefficient = $\frac{n!}{a! b! c!}$
  3. If no, coefficient = 0

Method 2: Grouping Method

To find coefficient in $(ax + by + cz)^n$:

Coefficient of $x^p y^q z^r$ = $\frac{n!}{p! q! r!} a^p b^q c^r$


Properties of Multinomial Coefficients

Property 1: Sum of All Coefficients

$$\boxed{\sum \binom{n}{n_1, n_2, \ldots, n_k} = k^n}$$

Proof: Put $x_1 = x_2 = \cdots = x_k = 1$ in multinomial theorem.

Example: Sum of all coefficients in $(a + b + c)^5 = 3^5 = 243$


Property 2: Multinomial Identity

$$\boxed{\sum_{n_1 + \cdots + n_k = n} \binom{n}{n_1, \ldots, n_k} = k^n}$$

Property 3: Relationship with Binomial

$$\binom{n}{n_1, n_2, \ldots, n_k} = \binom{n}{n_1} \binom{n - n_1}{n_2} \binom{n - n_1 - n_2}{n_3} \cdots$$

Advanced Applications

Application 1: Greatest Coefficient

To find greatest multinomial coefficient in $(x_1 + \cdots + x_k)^n$:

The greatest coefficient occurs when the powers are as equal as possible.

If $n = kq + r$ where $0 \leq r < k$:

  • $r$ terms get power $(q+1)$
  • $(k-r)$ terms get power $q$

Application 2: Coefficient of Specific Power

Find coefficient of $x^m$ in $(1 + x + x^2 + \cdots + x^k)^n$:

This requires generating functions and is related to partition theory.


Memory Tricks

🎯 Multinomial Coefficient Pattern

“Factorial on top, factorials below”:

$$\frac{n!}{\text{product of factorials of individual powers}}$$

🎯 Number of Terms

“Stars and Bars”:

  • $n$ stars (representing the power)
  • $k-1$ bars (separating into $k$ groups)
  • Total arrangements: $\binom{n+k-1}{k-1}$

🎯 Sum of Coefficients

“Replace all variables with 1”: $(1 + 1 + \cdots + 1)^n = k^n$ where $k$ is number of terms.


Common Mistakes to Avoid

❌ Mistake 1: Wrong Factorial Arrangement

Wrong: Coefficient of $x^2y^3z^4$ in $(x+y+z)^9$ is $\frac{2!3!4!}{9!}$ ✗

Correct: Coefficient = $\frac{9!}{2!3!4!}$ ✓

Remember: Total factorial on top, individual factorials on bottom!

❌ Mistake 2: Forgetting Power Sum Condition

Wrong: Finding coefficient of $x^2y^3z^3$ in $(x+y+z)^7$ ✗

Correct: No such term exists since $2+3+3 = 8 \neq 7$ ✓

❌ Mistake 3: Incorrect Number of Terms Formula

Wrong: Number of terms in $(x+y+z)^n$ is $3n$ ✗

Correct: Number of terms = $\binom{n+2}{2}$ ✓


Solved Examples

Example 1: Trinomial Expansion (JEE Advanced)

Expand $(x + 2y - 3z)^3$ completely.

Solution: Using $(a + b + c)^3 = \sum_{p+q+r=3} \frac{3!}{p!q!r!} a^p b^q c^r$

Here $a = x$, $b = 2y$, $c = -3z$

Terms where $p+q+r=3$:

$p$$q$$r$CoefficientTerm
300$\frac{3!}{3!0!0!} = 1$$x^3$
030$\frac{3!}{0!3!0!} = 1$$(2y)^3 = 8y^3$
003$\frac{3!}{0!0!3!} = 1$$(-3z)^3 = -27z^3$
210$\frac{3!}{2!1!0!} = 3$$3x^2(2y) = 6x^2y$
201$\frac{3!}{2!0!1!} = 3$$3x^2(-3z) = -9x^2z$
120$\frac{3!}{1!2!0!} = 3$$3x(2y)^2 = 12xy^2$
021$\frac{3!}{0!2!1!} = 3$$3(2y)^2(-3z) = -36y^2z$
102$\frac{3!}{1!0!2!} = 3$$3x(-3z)^2 = 27xz^2$
012$\frac{3!}{0!1!2!} = 3$$3(2y)(-3z)^2 = 54yz^2$
111$\frac{3!}{1!1!1!} = 6$$6x(2y)(-3z) = -36xyz$

Final Answer:

$$x^3 + 8y^3 - 27z^3 + 6x^2y - 9x^2z + 12xy^2 - 36y^2z + 27xz^2 + 54yz^2 - 36xyz$$

Example 2: Finding Coefficient (JEE Advanced)

Find the coefficient of $x^3y^4z^2$ in the expansion of $(x + y + z)^9$.

Solution: Check: $3 + 4 + 2 = 9$ ✓

Coefficient = $\frac{9!}{3! \cdot 4! \cdot 2!}$

$$= \frac{362880}{6 \times 24 \times 2} = \frac{362880}{288} = 1260$$

Example 3: Number of Terms (JEE Advanced)

How many distinct terms are there in the expansion of $(a + b + c + d)^{10}$?

Solution: Using formula: Number of terms = $\binom{n+k-1}{k-1}$

Here $n = 10$, $k = 4$:

$$\text{Number of terms} = \binom{10+4-1}{4-1} = \binom{13}{3} = \frac{13 \times 12 \times 11}{6} = 286$$

Example 4: Sum of Coefficients (JEE Advanced)

Find the sum of all coefficients in $(2x - 3y + 4z)^{15}$.

Solution: Put $x = y = z = 1$:

Sum = $(2(1) - 3(1) + 4(1))^{15} = (2 - 3 + 4)^{15} = 3^{15}$


Example 5: Coefficient with Powers (JEE Advanced)

Find the coefficient of $x^2y^3z^4$ in $(2x - y + 3z)^9$.

Solution: Check: $2 + 3 + 4 = 9$ ✓

General term: $\frac{9!}{p!q!r!}(2x)^p(-y)^q(3z)^r$ where $p+q+r=9$

For $x^2y^3z^4$: $p=2, q=3, r=4$

Coefficient = $\frac{9!}{2!3!4!} \times 2^2 \times (-1)^3 \times 3^4$

$$= \frac{362880}{2 \times 6 \times 24} \times 4 \times (-1) \times 81$$ $$= 1260 \times 4 \times (-1) \times 81 = -408240$$

Practice Problems

Level 1: JEE Main/Advanced Basics

Problem 1.1: Find the number of terms in $(a + b + c)^8$.

Solution

Number of terms = $\binom{8+3-1}{3-1} = \binom{10}{2} = 45$

Problem 1.2: Find the coefficient of $abc$ in $(a + b + c)^3$.

Solution

For $abc$: powers are $(1,1,1)$ and sum = 3 ✓

Coefficient = $\frac{3!}{1!1!1!} = 6$

Problem 1.3: Find sum of all coefficients in $(x + y + z)^{10}$.

Solution

Put $x = y = z = 1$: Sum = $(1+1+1)^{10} = 3^{10} = 59049$


Level 2: JEE Advanced

Problem 2.1: Find the coefficient of $x^2y^2z^2$ in $(x + y + z)^6$.

Solution

Check: $2 + 2 + 2 = 6$ ✓

Coefficient = $\frac{6!}{2!2!2!} = \frac{720}{8} = 90$

Problem 2.2: Find the greatest coefficient in $(1 + x + x^2)^{10}$.

Solution

Rewrite as $(1 + x + x^2)^{10} = \sum \frac{10!}{p!q!r!} 1^p x^q (x^2)^r$

$= \sum \frac{10!}{p!q!r!} x^{q+2r}$ where $p+q+r=10$

Greatest multinomial coefficient when powers are most equal: $p = q = r = 3$ with one being 4 is not possible since we need $p+q+r=10$.

Try: $p=4, q=3, r=3$: Coefficient = $\frac{10!}{4!3!3!} = 4200$

Or $p=3, q=4, r=3$: Same = $4200$

Or $p=3, q=3, r=4$: Same = $4200$

Greatest coefficient = $4200$

Problem 2.3: In $(1 + x + x^2 + x^3)^{100}$, find the coefficient of $x^{200}$.

Solution

$(1 + x + x^2 + x^3)^{100} = \sum \frac{100!}{n_0!n_1!n_2!n_3!} 1^{n_0} x^{n_1} (x^2)^{n_2} (x^3)^{n_3}$

where $n_0 + n_1 + n_2 + n_3 = 100$ and power of $x = n_1 + 2n_2 + 3n_3 = 200$

This is a complex partition problem. We need to count solutions to:

  • $n_0 + n_1 + n_2 + n_3 = 100$
  • $n_1 + 2n_2 + 3n_3 = 200$

From second: $n_1 = 200 - 2n_2 - 3n_3$

Substitute in first: $n_0 + 200 - 2n_2 - 3n_3 + n_2 + n_3 = 100$

$n_0 = -100 + n_2 + 2n_3$

Since $n_0 \geq 0$: $n_2 + 2n_3 \geq 100$

Also $n_1 \geq 0$: $2n_2 + 3n_3 \leq 200$

This requires systematic enumeration. (Advanced problem)


Level 3: Olympiad Level

Problem 3.1: Prove that the sum of all multinomial coefficients $\binom{n}{k_1, k_2, \ldots, k_m}$ where $k_1 + k_2 + \cdots + k_m = n$ equals $m^n$.

Solution

Consider $(x_1 + x_2 + \cdots + x_m)^n = \sum \binom{n}{k_1,\ldots,k_m} x_1^{k_1} \cdots x_m^{k_m}$

Put $x_1 = x_2 = \cdots = x_m = 1$:

$(1 + 1 + \cdots + 1)^n = m^n = \sum \binom{n}{k_1,\ldots,k_m}$

Problem 3.2: Find the coefficient of $x^{50}$ in $(1 + x + x^2 + \cdots + x^{10})^{10}$.

Solution

Using generating functions:

$(1 + x + x^2 + \cdots + x^{10})^{10} = \left(\frac{1-x^{11}}{1-x}\right)^{10}$

$= (1-x^{11})^{10}(1-x)^{-10}$

$= \left[\sum_{k=0}^{10}\binom{10}{k}(-x^{11})^k\right] \left[\sum_{j=0}^{\infty}\binom{-10}{j}(-x)^j\right]$

$= \left[\sum_{k=0}^{10}\binom{10}{k}(-1)^k x^{11k}\right] \left[\sum_{j=0}^{\infty}\binom{j+9}{9}x^j\right]$

Coefficient of $x^{50}$: Need $11k + j = 50$

  • $k=0, j=50$: $\binom{10}{0} \times 1 \times \binom{59}{9}$
  • $k=1, j=39$: $\binom{10}{1} \times (-1) \times \binom{48}{9}$
  • $k=2, j=28$: $\binom{10}{2} \times 1 \times \binom{37}{9}$
  • $k=3, j=17$: $\binom{10}{3} \times (-1) \times \binom{26}{9}$
  • $k=4, j=6$: $\binom{10}{4} \times 1 \times \binom{15}{9}$

Sum these to get the coefficient.


Important Formulas Summary

PropertyFormula
Multinomial Expansion$(x_1 + \cdots + x_k)^n = \sum \frac{n!}{n_1!\cdots n_k!}x_1^{n_1}\cdots x_k^{n_k}$
Multinomial Coefficient$\binom{n}{n_1,\ldots,n_k} = \frac{n!}{n_1! \cdots n_k!}$
Number of Terms$\binom{n+k-1}{k-1}$
Sum of Coefficients$k^n$ (put all variables = 1)
Trinomial$(a+b+c)^n = \sum_{p+q+r=n}\frac{n!}{p!q!r!}a^pb^qc^r$

Cross-References


Quick Revision Points

  1. Multinomial generalizes binomial to multiple terms
  2. Coefficient: Total factorial divided by individual factorials
  3. Number of terms: Use stars and bars formula
  4. Sum of coefficients: Replace all variables with 1
  5. Always check if power sum equals $n$

Last updated: October 28, 2025