Complex numbers extend the real number system by introducing the imaginary unit $i = \sqrt{-1}$. This allows us to solve any polynomial equation.
Overview
graph TD
A[Complex Numbers] --> B[Representation]
A --> C[Operations]
A --> D[Argand Diagram]
A --> E[Quadratic Equations]
B --> B1[a + ib form]
B --> B2[Polar form]
C --> C1[Addition/Subtraction]
C --> C2[Multiplication/Division]
D --> D1[Modulus]
D --> D2[Argument]
E --> E1[Nature of Roots]
E --> E2[Relation with Coefficients]Complex Numbers as Ordered Pairs
A complex number $z$ is an ordered pair $(a, b)$ of real numbers, written as:
$$z = a + ib$$where:
- $a = \text{Re}(z)$ is the real part
- $b = \text{Im}(z)$ is the imaginary part
- $i = \sqrt{-1}$ is the imaginary unit
Powers of i
| Power | Value |
|---|---|
| $i^0$ | $1$ |
| $i^1$ | $i$ |
| $i^2$ | $-1$ |
| $i^3$ | $-i$ |
| $i^4$ | $1$ |
Algebra of Complex Numbers
Addition and Subtraction
$$(a + ib) + (c + id) = (a + c) + i(b + d)$$ $$(a + ib) - (c + id) = (a - c) + i(b - d)$$Multiplication
$$(a + ib)(c + id) = (ac - bd) + i(ad + bc)$$Division
$$\frac{a + ib}{c + id} = \frac{(a + ib)(c - id)}{(c + id)(c - id)} = \frac{(ac + bd) + i(bc - ad)}{c^2 + d^2}$$Conjugate
The conjugate of $z = a + ib$ is:
$$\bar{z} = a - ib$$Properties:
- $\overline{z_1 + z_2} = \bar{z_1} + \bar{z_2}$
- $\overline{z_1 \cdot z_2} = \bar{z_1} \cdot \bar{z_2}$
- $z \cdot \bar{z} = |z|^2$
- $z + \bar{z} = 2\text{Re}(z)$
- $z - \bar{z} = 2i\text{Im}(z)$
Argand Diagram
Complex numbers can be represented as points in a 2D plane called the Argand plane or Complex plane.
graph LR
subgraph "Argand Plane"
A["z = a + ib"] --> B["Point (a, b)"]
end
B --> C["x-axis: Real axis"]
B --> D["y-axis: Imaginary axis"]Modulus
The modulus (or absolute value) of $z = a + ib$ is:
$$|z| = \sqrt{a^2 + b^2}$$This represents the distance from the origin to the point $z$.
Properties:
- $|z| \geq 0$
- $|z| = 0 \Leftrightarrow z = 0$
- $|z_1 z_2| = |z_1| |z_2|$
- $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$
- $|z_1 + z_2| \leq |z_1| + |z_2|$ (Triangle Inequality)
Argument
The argument of $z = a + ib$ is the angle $\theta$ made with the positive real axis:
$$\arg(z) = \theta = \tan^{-1}\left(\frac{b}{a}\right)$$The principal argument lies in $(-\pi, \pi]$.
| Quadrant | Range of $\theta$ |
|---|---|
| I | $0 < \theta < \frac{\pi}{2}$ |
| II | $\frac{\pi}{2} < \theta < \pi$ |
| III | $-\pi < \theta < -\frac{\pi}{2}$ |
| IV | $-\frac{\pi}{2} < \theta < 0$ |
Polar Form
A complex number can be written in polar form as:
$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$where $r = |z|$ and $\theta = \arg(z)$.
Euler’s Formula
$$\boxed{e^{i\theta} = \cos\theta + i\sin\theta}$$De Moivre’s Theorem
$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$Quadratic Equations
A quadratic equation in $x$ is:
$$ax^2 + bx + c = 0, \quad a \neq 0$$Quadratic Formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{D}}{2a}$$where $D = b^2 - 4ac$ is the discriminant.
Nature of Roots
| Discriminant | Nature of Roots |
|---|---|
| $D > 0$ | Two distinct real roots |
| $D = 0$ | Two equal real roots |
| $D < 0$ | Two complex conjugate roots |
For rational roots (when $a, b, c \in \mathbb{Q}$):
- $D > 0$ and $D$ is a perfect square → Rational roots
- $D > 0$ but not a perfect square → Irrational roots
Relations Between Roots and Coefficients
If $\alpha$ and $\beta$ are roots of $ax^2 + bx + c = 0$:
$$\boxed{\alpha + \beta = -\frac{b}{a}}$$ $$\boxed{\alpha \cdot \beta = \frac{c}{a}}$$Formation of Quadratic Equation
Given roots $\alpha$ and $\beta$, the quadratic equation is:
$$x^2 - (\alpha + \beta)x + \alpha\beta = 0$$Or equivalently:
$$(x - \alpha)(x - \beta) = 0$$Important Results
Cube Roots of Unity
The solutions of $z^3 = 1$ are:
$$1, \omega = \frac{-1 + i\sqrt{3}}{2}, \omega^2 = \frac{-1 - i\sqrt{3}}{2}$$Properties:
- $1 + \omega + \omega^2 = 0$
- $\omega^3 = 1$
- $\omega \cdot \omega^2 = 1$
nth Roots of Unity
The $n$ roots of $z^n = 1$ are:
$$z_k = e^{i\frac{2\pi k}{n}} = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}, \quad k = 0, 1, 2, ..., n-1$$Practice Problems
Express $\frac{1+i}{1-i}$ in the form $a + ib$.
Find the modulus and argument of $z = -1 + i\sqrt{3}$.
Find all values of $z$ such that $z^4 = -16$.
If $\alpha, \beta$ are roots of $x^2 - 3x + 5 = 0$, find the equation whose roots are $\alpha^2$ and $\beta^2$.