De Moivre's Theorem: Powers and Roots

Master De Moivre's theorem for finding powers and nth roots of complex numbers for JEE Main & Advanced.

The Hook: The Power of Rotation!

Connect: Thor's Hammer and Rotations

In Thor movies, when Thor swings Mjolnir (his hammer) in circles, each rotation multiplies the momentum. If he rotates it $n$ times, the effect is multiplied $n$ times!

De Moivre’s theorem works similarly — when you raise a complex number to power $n$, you multiply the angle by $n$ and raise the modulus to power $n$. It’s like spinning Thor’s hammer $n$ times!

Real-world application: Signal processing, quantum mechanics, and solving polynomial equations all use this theorem!

Why this matters for JEE: De Moivre’s theorem appears in 1-2 questions and is essential for finding roots of unity and solving higher-degree equations. Master it for quick solutions!


Prerequisites

Before learning De Moivre’s theorem, ensure you understand:

  • Modulus and Argument — Polar form $z = r(\cos\theta + i\sin\theta)$
  • Trigonometry — Multiple angle formulas
  • Exponent laws — $(a^m)^n = a^{mn}$
  • Euler’s formula — $e^{i\theta} = \cos\theta + i\sin\theta$

Interactive Demo: Visualize De Moivre’s Theorem

Explore De Moivre’s theorem in action! Use the De Moivre’s Power slider to raise z to different powers and watch:

  • The angle multiplies by n (the argument becomes n times theta)
  • The modulus raises to power n (r becomes r^n)

Click Animate z^n to see the smooth rotation! Try the Roots of Unity presets to see:

  • Cube roots forming an equilateral triangle
  • Fourth roots forming a square
  • Fifth roots forming a regular pentagon
  • How all nth roots sum to zero!

De Moivre’s Theorem: The Statement

For Positive Integer Powers

For any real number $\theta$ and positive integer $n$:

$$\boxed{(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)}$$

In simple terms: When you raise a complex number on the unit circle to power $n$, multiply the angle by $n$!

General Form

For any complex number $z = r(\cos\theta + i\sin\theta)$ and positive integer $n$:

$$\boxed{z^n = r^n(\cos(n\theta) + i\sin(n\theta))}$$

Breaking it down:

  • Modulus: $|z^n| = |z|^n = r^n$ (raise modulus to power $n$)
  • Argument: $\arg(z^n) = n\theta$ (multiply angle by $n$)

Using Exponential Form

Using Euler’s formula $e^{i\theta} = \cos\theta + i\sin\theta$:

$$\boxed{(re^{i\theta})^n = r^n e^{in\theta}}$$

This is the cleanest form!


Why Does It Work?

Proof for Positive Integers (by Induction)

Base case: $n = 1$

$$(\cos\theta + i\sin\theta)^1 = \cos(1 \cdot \theta) + i\sin(1 \cdot \theta)$$

Inductive step: Assume true for $n = k$:

$$(\cos\theta + i\sin\theta)^k = \cos(k\theta) + i\sin(k\theta)$$

For $n = k + 1$:

$$(\cos\theta + i\sin\theta)^{k+1} = (\cos\theta + i\sin\theta)^k \cdot (\cos\theta + i\sin\theta)$$ $$= [\cos(k\theta) + i\sin(k\theta)][\cos\theta + i\sin\theta]$$

Using the multiplication formula for polar forms:

$$= \cos(k\theta + \theta) + i\sin(k\theta + \theta)$$ $$= \cos[(k+1)\theta] + i\sin[(k+1)\theta]$$

By induction, theorem holds for all positive integers $n$!


Applications: Finding Powers

Example 1: Simple Power

Find $(1 + i)^{10}$.

Solution:

Step 1: Convert to polar form.

$|1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}$

$\arg(1 + i) = \frac{\pi}{4}$ (Quadrant I)

So $1 + i = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$

Step 2: Apply De Moivre’s theorem.

$$(1 + i)^{10} = (\sqrt{2})^{10}\left[\cos\left(10 \cdot \frac{\pi}{4}\right) + i\sin\left(10 \cdot \frac{\pi}{4}\right)\right]$$ $$= 2^5\left[\cos\frac{10\pi}{4} + i\sin\frac{10\pi}{4}\right]$$ $$= 32\left[\cos\frac{5\pi}{2} + i\sin\frac{5\pi}{2}\right]$$

Step 3: Simplify using periodicity.

$\frac{5\pi}{2} = 2\pi + \frac{\pi}{2}$

$$\cos\frac{5\pi}{2} = \cos\frac{\pi}{2} = 0$$ $$\sin\frac{5\pi}{2} = \sin\frac{\pi}{2} = 1$$

Answer: $(1 + i)^{10} = 32(0 + i \cdot 1) = 32i$

JEE Shortcut: Common Angles

Memorize powers of common complex numbers:

  • $(1 + i)^2 = 2i$
  • $(1 + i)^4 = -4$
  • $(1 + i)^8 = 16$
  • $(\sqrt{3} + i)^6 = -64$

These appear frequently!

Example 2: Negative Powers

Find $\left(\frac{1 + i\sqrt{3}}{2}\right)^{-5}$.

Solution:

First find the polar form:

$\left|\frac{1 + i\sqrt{3}}{2}\right| = \frac{\sqrt{1 + 3}}{2} = \frac{2}{2} = 1$

$\arg\left(\frac{1 + i\sqrt{3}}{2}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$

So $\frac{1 + i\sqrt{3}}{2} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$

For negative power:

$$\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{-5} = \cos\left(-5 \cdot \frac{\pi}{3}\right) + i\sin\left(-5 \cdot \frac{\pi}{3}\right)$$ $$= \cos\left(-\frac{5\pi}{3}\right) + i\sin\left(-\frac{5\pi}{3}\right)$$

Converting: $-\frac{5\pi}{3} = -2\pi + \frac{\pi}{3}$

$$= \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

Answer: $\frac{1 + i\sqrt{3}}{2}$


Finding nth Roots of Complex Numbers

The Problem

Given a complex number $w$ and positive integer $n$, find all complex numbers $z$ such that:

$$z^n = w$$

These are called the nth roots of $w$.

The Formula

If $w = r(\cos\alpha + i\sin\alpha)$, then the $n$ distinct nth roots are:

$$\boxed{z_k = r^{1/n}\left[\cos\left(\frac{\alpha + 2k\pi}{n}\right) + i\sin\left(\frac{\alpha + 2k\pi}{n}\right)\right]}$$

where $k = 0, 1, 2, ..., n-1$.

In simple terms:

  • Modulus: Take the $n$th root of modulus: $r^{1/n}$
  • Argument: Divide angle by $n$ and add $\frac{2k\pi}{n}$ for each root

Why $n$ Roots?

Every non-zero complex number has exactly $n$ distinct nth roots.

They are equally spaced around a circle of radius $r^{1/n}$ at angular intervals of $\frac{2\pi}{n}$.

Geometric Interpretation

The $n$ nth roots form the vertices of a regular $n$-sided polygon inscribed in a circle of radius $r^{1/n}$!


Examples: Finding Roots

Example 1: Square Roots

Find all square roots of $i$.

Solution:

We need $z^2 = i$.

Step 1: Express $i$ in polar form.

$|i| = 1$, $\arg(i) = \frac{\pi}{2}$

So $i = 1 \cdot \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$

Step 2: Apply root formula with $n = 2$.

$$z_k = 1^{1/2}\left[\cos\left(\frac{\frac{\pi}{2} + 2k\pi}{2}\right) + i\sin\left(\frac{\frac{\pi}{2} + 2k\pi}{2}\right)\right]$$

For $k = 0$:

$$z_0 = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}} = \frac{1 + i}{\sqrt{2}}$$

For $k = 1$:

$$z_1 = \cos\left(\frac{\pi}{4} + \pi\right) + i\sin\left(\frac{\pi}{4} + \pi\right) = \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}$$ $$= -\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}} = -\frac{1 + i}{\sqrt{2}}$$

Answer: $z = \pm\frac{1 + i}{\sqrt{2}}$

Example 2: Cube Roots

Find all cube roots of $8$.

Solution:

We need $z^3 = 8$.

$8 = 8(\cos 0 + i\sin 0)$

$$z_k = 8^{1/3}\left[\cos\left(\frac{0 + 2k\pi}{3}\right) + i\sin\left(\frac{0 + 2k\pi}{3}\right)\right] = 2\left[\cos\frac{2k\pi}{3} + i\sin\frac{2k\pi}{3}\right]$$

For $k = 0$: $z_0 = 2(\cos 0 + i\sin 0) = 2$

For $k = 1$: $z_1 = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = -1 + i\sqrt{3}$

For $k = 2$: $z_2 = 2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right) = 2\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = -1 - i\sqrt{3}$

Answer: $z = 2, -1 + i\sqrt{3}, -1 - i\sqrt{3}$

Example 3: Fourth Roots

Find all fourth roots of $-16$.

Solution:

$-16 = 16(\cos\pi + i\sin\pi)$

$$z_k = 16^{1/4}\left[\cos\left(\frac{\pi + 2k\pi}{4}\right) + i\sin\left(\frac{\pi + 2k\pi}{4}\right)\right]$$ $$= 2\left[\cos\frac{(2k+1)\pi}{4} + i\sin\frac{(2k+1)\pi}{4}\right]$$

For $k = 0$: $z_0 = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = 2 \cdot \frac{1 + i}{\sqrt{2}} = \sqrt{2}(1 + i)$

For $k = 1$: $z_1 = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = \sqrt{2}(-1 + i)$

For $k = 2$: $z_2 = 2\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right) = \sqrt{2}(-1 - i)$

For $k = 3$: $z_3 = 2\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right) = \sqrt{2}(1 - i)$

Answer: $\pm\sqrt{2}(1 + i), \pm\sqrt{2}(1 - i)$


Roots of Unity

Definition

The nth roots of unity are the solutions to:

$$z^n = 1$$

These are denoted as $1, \omega, \omega^2, ..., \omega^{n-1}$ where $\omega = e^{2\pi i/n}$.

General Formula

$$\boxed{\omega_k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} = e^{2\pi ik/n}}$$

where $k = 0, 1, 2, ..., n-1$.

Properties

  1. Sum of roots: $1 + \omega + \omega^2 + ... + \omega^{n-1} = 0$

  2. Product of roots: $1 \cdot \omega \cdot \omega^2 \cdots \omega^{n-1} = (-1)^{n-1}$

  3. Geometric progression: The roots form a GP with first term $1$ and common ratio $\omega$

  4. Regular polygon: The roots are vertices of a regular $n$-gon on the unit circle


Common Mistakes to Avoid

Trap #1: Missing Roots

Wrong: The square roots of $4$ are $\pm 2$ (only real roots)

Right: For complex numbers, always find ALL $n$ roots!

For $z^2 = 4 = 4(\cos 0 + i\sin 0)$:

$z_0 = 2(\cos 0 + i\sin 0) = 2$

$z_1 = 2(\cos\pi + i\sin\pi) = -2$

So roots are $\pm 2$ (happens to be real in this case)

Trap #2: Angle Reduction

After applying De Moivre’s theorem, always reduce the angle to standard range $[0, 2\pi)$ or $(-\pi, \pi]$.

Example: $\cos\frac{10\pi}{4} = \cos\left(2\pi + \frac{\pi}{2}\right) = \cos\frac{\pi}{2} = 0$

Trap #3: Forgetting to Add 2kπ

Wrong: For $z^3 = 1$, just use $z = \cos 0 + i\sin 0 = 1$

Right: There are 3 roots! Use $k = 0, 1, 2$:

$z_0 = 1$, $z_1 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$, $z_2 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}$

Trap #4: Wrong Modulus for Roots

For nth root, the modulus is $r^{1/n}$, NOT $\frac{r}{n}$!

Example: For cube roots of $8$, modulus is $8^{1/3} = 2$, not $8/3$


When to Use De Moivre’s Theorem

Decision Tree

Use De Moivre’s theorem when:

  • Finding powers of complex numbers (especially high powers)
  • Finding nth roots of complex numbers
  • Deriving trigonometric identities (like $\cos 3\theta, \sin 5\theta$)
  • Solving equations like $z^n = w$
  • Working with roots of unity

Key insight: Convert to polar form first, then apply the theorem — much faster than algebraic multiplication!


Practice Problems

Level 1: Foundation (NCERT)

Problem 1.1

Find $(1 + i)^4$ using De Moivre’s theorem.

Solution:

$1 + i = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$

$$(1+i)^4 = (\sqrt{2})^4\left[\cos\left(4 \cdot \frac{\pi}{4}\right) + i\sin\left(4 \cdot \frac{\pi}{4}\right)\right]$$ $$= 4(\cos\pi + i\sin\pi) = 4(-1 + 0) = -4$$

Answer: $-4$

Problem 1.2

Find all square roots of $-1$.

Solution:

$-1 = \cos\pi + i\sin\pi$

$$z_k = \cos\frac{\pi + 2k\pi}{2} + i\sin\frac{\pi + 2k\pi}{2}$$

For $k = 0$: $z_0 = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i$

For $k = 1$: $z_1 = \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} = -i$

Answer: $\pm i$

Problem 1.3

Find the cube roots of unity.

Solution:

$1 = \cos 0 + i\sin 0$

$$z_k = \cos\frac{2k\pi}{3} + i\sin\frac{2k\pi}{3}, \quad k = 0, 1, 2$$

$z_0 = 1$

$z_1 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = \omega$

$z_2 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} = \omega^2$

Answer: $1, \omega, \omega^2$ where $\omega = \frac{-1 + i\sqrt{3}}{2}$

Level 2: JEE Main

Problem 2.1

Find $(\sqrt{3} + i)^{10}$.

Solution:

$|\sqrt{3} + i| = \sqrt{3 + 1} = 2$

$\arg(\sqrt{3} + i) = \tan^{-1}\frac{1}{\sqrt{3}} = \frac{\pi}{6}$

So $\sqrt{3} + i = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$

$$(\sqrt{3} + i)^{10} = 2^{10}\left[\cos\frac{10\pi}{6} + i\sin\frac{10\pi}{6}\right]$$ $$= 1024\left[\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right]$$ $$= 1024\left[\frac{1}{2} - i\frac{\sqrt{3}}{2}\right]$$ $$= 512 - 512i\sqrt{3}$$

Answer: $512(1 - i\sqrt{3})$

Problem 2.2

If $z = 1 + \cos\theta + i\sin\theta$, prove that $z^n = 2^n\cos^n\frac{\theta}{2} \cdot e^{in\theta/2}$.

Solution:

First simplify $z$:

$$z = 1 + \cos\theta + i\sin\theta = (1 + \cos\theta) + i\sin\theta$$

Using: $1 + \cos\theta = 2\cos^2\frac{\theta}{2}$ and $\sin\theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$

$$z = 2\cos^2\frac{\theta}{2} + 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}$$ $$= 2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right)$$ $$= 2\cos\frac{\theta}{2} \cdot e^{i\theta/2}$$

Therefore:

$$z^n = \left[2\cos\frac{\theta}{2} \cdot e^{i\theta/2}\right]^n = 2^n\cos^n\frac{\theta}{2} \cdot e^{in\theta/2}$$

Proved!

Problem 2.3

Find all values of $z$ satisfying $z^4 = -1 + i\sqrt{3}$.

Solution:

First, express $-1 + i\sqrt{3}$ in polar form:

$r = \sqrt{1 + 3} = 2$

$\theta = \pi - \tan^{-1}(\sqrt{3}) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$ (Quadrant II)

So $-1 + i\sqrt{3} = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$

Fourth roots:

$$z_k = 2^{1/4}\left[\cos\frac{\frac{2\pi}{3} + 2k\pi}{4} + i\sin\frac{\frac{2\pi}{3} + 2k\pi}{4}\right]$$ $$= \sqrt[4]{2}\left[\cos\frac{2\pi(3k+1)}{12} + i\sin\frac{2\pi(3k+1)}{12}\right]$$

For $k = 0, 1, 2, 3$:

$z_0 = \sqrt[4]{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$

$z_1 = \sqrt[4]{2}\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$

$z_2 = \sqrt[4]{2}\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$

$z_3 = \sqrt[4]{2}\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$

Answer: Four roots at angles $\frac{\pi}{6}, \frac{2\pi}{3}, \frac{7\pi}{6}, \frac{5\pi}{3}$ with modulus $\sqrt[4]{2}$

Level 3: JEE Advanced

Problem 3.1

If $\alpha$ is a non-real 5th root of unity, find the value of $\alpha + \alpha^2 + \alpha^3 + \alpha^4$.

Solution:

The 5th roots of unity satisfy $z^5 = 1$, which gives:

$z^5 - 1 = 0$

$(z - 1)(z^4 + z^3 + z^2 + z + 1) = 0$

Since $\alpha \neq 1$ (non-real), it satisfies:

$$\alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1 = 0$$

Therefore:

$$\alpha + \alpha^2 + \alpha^3 + \alpha^4 = -1$$

Answer: $-1$

Problem 3.2

Prove that the $n$th roots of unity form a geometric progression and their sum is zero.

Solution:

The nth roots are: $1, \omega, \omega^2, ..., \omega^{n-1}$ where $\omega = e^{2\pi i/n}$

GP property: Each term is $\omega$ times the previous term, so they form a GP with first term $a = 1$ and common ratio $r = \omega$.

Sum: Using GP sum formula:

$$S = \frac{a(r^n - 1)}{r - 1} = \frac{1(\omega^n - 1)}{\omega - 1}$$

Since $\omega^n = e^{2\pi i} = 1$:

$$S = \frac{1 - 1}{\omega - 1} = 0$$

Proved!

Problem 3.3

Using De Moivre’s theorem, prove that $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$.

Solution:

By De Moivre’s theorem:

$$(\cos\theta + i\sin\theta)^3 = \cos 3\theta + i\sin 3\theta$$

Expanding LHS using binomial theorem:

$$(\cos\theta + i\sin\theta)^3 = \cos^3\theta + 3\cos^2\theta(i\sin\theta) + 3\cos\theta(i\sin\theta)^2 + (i\sin\theta)^3$$ $$= \cos^3\theta + 3i\cos^2\theta\sin\theta - 3\cos\theta\sin^2\theta - i\sin^3\theta$$ $$= (\cos^3\theta - 3\cos\theta\sin^2\theta) + i(3\cos^2\theta\sin\theta - \sin^3\theta)$$

Comparing real parts:

$$\cos 3\theta = \cos^3\theta - 3\cos\theta\sin^2\theta$$ $$= \cos^3\theta - 3\cos\theta(1 - \cos^2\theta)$$ $$= \cos^3\theta - 3\cos\theta + 3\cos^3\theta$$ $$= 4\cos^3\theta - 3\cos\theta$$

Proved!


Quick Revision Box

ConceptFormulaApplication
De Moivre’s Theorem$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$Powers
General form$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos(n\theta) + i\sin(n\theta))$Powers
Exponential form$(re^{i\theta})^n = r^n e^{in\theta}$Quickest!
nth roots formula$z_k = r^{1/n}\left[\cos\frac{\alpha + 2k\pi}{n} + i\sin\frac{\alpha + 2k\pi}{n}\right]$$k = 0, 1, ..., n-1$
Roots of unity$\omega_k = e^{2\pi ik/n}$$k = 0, 1, ..., n-1$
Sum of nth roots of unity$1 + \omega + \omega^2 + ... + \omega^{n-1} = 0$Important property

Within Complex Numbers Chapter

Math Connections

Physics Applications

  • Quantum Mechanics — Wave functions and operators
  • AC Circuits — Phasor analysis
  • Signal Processing — Fourier transforms

Teacher’s Summary

Key Takeaways
  1. De Moivre’s Theorem: $(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$ makes powers trivial
  2. For powers: Raise modulus to power $n$, multiply angle by $n$
  3. For nth roots: Take nth root of modulus, divide angle by $n$, add $\frac{2k\pi}{n}$ for $k = 0, 1, ..., n-1$
  4. Every non-zero complex number has exactly $n$ distinct nth roots equally spaced on a circle
  5. Roots of unity sum to zero and form vertices of regular polygon

“De Moivre’s theorem is your superpower for complex number calculations — memorize it, master it, ace JEE!”

Exam Strategy: For any power or root problem, immediately convert to polar form and use De Moivre. Don’t waste time with algebraic multiplication!