Modulus, Argument and Polar Form

Master modulus |z|, argument arg(z), polar and exponential forms of complex numbers for JEE Main & Advanced.

The Hook: Every Number Has a GPS Coordinate!

Connect: Polar Coordinates Like a Radar

Think about a radar screen in movies like Top Gun or Mission: Impossible. They don’t show positions as (x, y) coordinates — they show distance and angle from the radar!

Complex numbers work the same way! Instead of $z = a + ib$ (rectangular), we can use polar form: distance from origin and angle from the positive real axis.

Real-world use: GPS systems, radar, sonar, and AC circuit analysis all use polar coordinates!

Why this matters for JEE: Polar form makes multiplication, division, powers, and roots incredibly simple. Expect 2-3 questions using modulus-argument properties!


Prerequisites

Before learning modulus and argument, review:


Modulus: The Distance from Origin

Definition

The modulus (or absolute value) of a complex number $z = a + ib$ is its distance from the origin on the Argand plane:

$$\boxed{|z| = \sqrt{a^2 + b^2}}$$

In simple terms: Modulus is the length of the line segment from origin to the point representing $z$.

Interactive Demo: Visualize Modulus and Argument

Explore how modulus and argument define complex numbers in polar form.

Examples

Complex NumberModulus
$3 + 4i$$\sqrt{9 + 16} = 5$
$-5 + 12i$$\sqrt{25 + 144} = 13$
$1 - i$$\sqrt{1 + 1} = \sqrt{2}$
$7$$\sqrt{49 + 0} = 7$
$-3i$$\sqrt{0 + 9} = 3$
Memory Trick: Famous Pythagorean Triples

Memorize these for quick calculation:

  • 3-4-5: $|3 + 4i| = 5$
  • 5-12-13: $|5 + 12i| = 13$
  • 8-15-17: $|8 + 15i| = 17$
  • 7-24-25: $|7 + 24i| = 25$

These appear frequently in JEE!


Properties of Modulus

Basic Properties

  1. Non-negative: $|z| \geq 0$, and $|z| = 0 \iff z = 0$

  2. Conjugate: $|\bar{z}| = |z|$ (conjugate has same modulus)

  3. Product: $z \cdot \bar{z} = |z|^2$

    Proof: $(a + ib)(a - ib) = a^2 + b^2 = |z|^2$

  4. Multiplicative: $|z_1 z_2| = |z_1| |z_2|$

  5. Division: $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$ (if $z_2 \neq 0$)

  6. Powers: $|z^n| = |z|^n$

Triangle Inequalities

For any complex numbers $z_1, z_2$:

$$\boxed{|z_1 + z_2| \leq |z_1| + |z_2|}$$

(Triangle Inequality)

$$\boxed{|z_1 - z_2| \geq ||z_1| - |z_2||}$$ $$\boxed{|z_1 + z_2| \geq ||z_1| - |z_2||}$$

Geometric meaning: In any triangle, the length of one side is less than or equal to the sum of the other two sides.


Argument: The Angle from Positive Real Axis

Definition

The argument of a non-zero complex number $z = a + ib$ is the angle $\theta$ that the line segment from origin to $z$ makes with the positive real axis.

$$\boxed{\arg(z) = \theta}$$

Notation: $\arg(z)$ or sometimes $\text{amp}(z)$ (amplitude)

Finding the Argument

For $z = a + ib$:

$$\tan\theta = \frac{b}{a}$$

But be careful! The formula $\theta = \tan^{-1}(b/a)$ doesn’t always give the correct angle.

The Correct Formula (Quadrant-Aware)

QuadrantConditionArgument $\theta$
I$a > 0, b > 0$$\theta = \tan^{-1}\left(\frac{b}{a}\right)$
II$a < 0, b > 0$$\theta = \pi - \tan^{-1}\left(\frac{
III$a < 0, b < 0$$\theta = -\pi + \tan^{-1}\left(\frac{
IV$a > 0, b < 0$$\theta = -\tan^{-1}\left(\frac{
Positive real axis$b = 0, a > 0$$\theta = 0$
Negative real axis$b = 0, a < 0$$\theta = \pi$ or $-\pi$
Positive imaginary axis$a = 0, b > 0$$\theta = \frac{\pi}{2}$
Negative imaginary axis$a = 0, b < 0$$\theta = -\frac{\pi}{2}$
Trap: Always Check the Quadrant!

Wrong: $\arg(-1 + i) = \tan^{-1}(1/(-1)) = \tan^{-1}(-1) = -\pi/4$

Right: $-1 + i$ is in Quadrant II, so:

$$\theta = \pi - \tan^{-1}\left(\frac{1}{1}\right) = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

Always plot the point to determine the correct quadrant!

Principal Argument

The principal value of the argument lies in the range:

$$\boxed{-\pi < \arg(z) \leq \pi}$$

This is the standard convention in JEE.

General Argument

If $\theta$ is the principal argument, the general argument is:

$$\arg(z) = \theta + 2n\pi, \quad n \in \mathbb{Z}$$

Polar Form of Complex Numbers

Conversion from Rectangular to Polar

Any complex number $z = a + ib$ can be written as:

$$\boxed{z = r(\cos\theta + i\sin\theta)}$$

where:

  • $r = |z| = \sqrt{a^2 + b^2}$ (modulus)
  • $\theta = \arg(z)$ (argument)

This is called the polar form or trigonometric form.

Conversion from Polar to Rectangular

Given $z = r(\cos\theta + i\sin\theta)$:

$$a = r\cos\theta, \quad b = r\sin\theta$$

So $z = r\cos\theta + ir\sin\theta = a + ib$

Examples

Example 1: Convert $1 + i$ to polar form.

$r = |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}$

$\theta = \tan^{-1}(1/1) = \pi/4$ (Quadrant I)

Answer: $z = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$

Example 2: Convert $-\sqrt{3} + i$ to polar form.

$r = \sqrt{3 + 1} = 2$

$\theta = \pi - \tan^{-1}(1/\sqrt{3}) = \pi - \pi/6 = 5\pi/6$ (Quadrant II)

Answer: $z = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$


Exponential Form (Euler’s Formula)

Euler’s Formula

One of the most beautiful formulas in mathematics:

$$\boxed{e^{i\theta} = \cos\theta + i\sin\theta}$$

This connects exponential functions, trigonometry, and complex numbers!

Exponential Form

Using Euler’s formula, the polar form becomes:

$$\boxed{z = re^{i\theta}}$$

where $r = |z|$ and $\theta = \arg(z)$.

Example: $1 + i = \sqrt{2}e^{i\pi/4}$

Important Special Cases

$$e^{i\pi} = \cos\pi + i\sin\pi = -1 + 0i = -1$$

This gives Euler’s Identity, considered the most beautiful equation:

$$\boxed{e^{i\pi} + 1 = 0}$$

It connects five fundamental constants: $e, i, \pi, 1, 0$!


Properties of Argument

For non-zero complex numbers $z_1, z_2$:

Addition Rule

$$\boxed{\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)}$$

(up to multiples of $2\pi$)

In simple terms: When you multiply complex numbers, their moduli multiply and their arguments add!

Division Rule

$$\boxed{\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)}$$

Conjugate Rule

$$\boxed{\arg(\bar{z}) = -\arg(z)}$$

(Reflection across real axis reverses the angle)

Negative Rule

$$\boxed{\arg(-z) = \arg(z) \pm \pi}$$

Power Rule

$$\boxed{\arg(z^n) = n \cdot \arg(z)}$$

(up to multiples of $2\pi$)


Multiplication and Division in Polar Form

Multiplication

If $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$:

$$\boxed{z_1 z_2 = r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]}$$

Rule: Multiply moduli, add arguments!

Example: Multiply $z_1 = 2(\cos 30° + i\sin 30°)$ and $z_2 = 3(\cos 45° + i\sin 45°)$

$z_1 z_2 = (2 \times 3)[\cos(30° + 45°) + i\sin(30° + 45°)]$

$= 6(\cos 75° + i\sin 75°)$

Division

$$\boxed{\frac{z_1}{z_2} = \frac{r_1}{r_2}[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)]}$$

Rule: Divide moduli, subtract arguments!

JEE Shortcut: Polar Form for Multiplication/Division

When you need to multiply or divide complex numbers:

  1. Convert to polar form
  2. Multiply/divide moduli
  3. Add/subtract arguments
  4. Convert back if needed

This is much faster than algebraic multiplication, especially for JEE Advanced!


Common Mistakes to Avoid

Trap #1: Modulus of Sum ≠ Sum of Moduli

Wrong: $|z_1 + z_2| = |z_1| + |z_2|$

Right: $|z_1 + z_2| \leq |z_1| + |z_2|$ (Triangle Inequality)

Equality holds only when $z_1$ and $z_2$ have the same argument (same direction).

Trap #2: Argument in Wrong Quadrant

Always check which quadrant the complex number is in!

For $z = -1 - i$:

  • Wrong: $\arg(z) = \tan^{-1}(1) = \pi/4$
  • Right: $z$ is in Quadrant III, so $\arg(z) = -\pi + \pi/4 = -3\pi/4$
Trap #3: Argument Addition with Multiples of 2π

$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$ is true up to multiples of $2\pi$.

The result might need adjustment to fit in $(-\pi, \pi]$.

Example: If $\arg(z_1) = \frac{3\pi}{4}$ and $\arg(z_2) = \frac{3\pi}{4}$:

$\arg(z_1z_2) = \frac{3\pi}{4} + \frac{3\pi}{4} = \frac{3\pi}{2}$

But principal value is $\frac{3\pi}{2} - 2\pi = -\frac{\pi}{2}$

Trap #4: Modulus of Product vs Product of Moduli

Right: $|z_1 z_2| = |z_1| |z_2|$ (always true!)

But $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$ needs care with $2\pi$ multiples.


When to Use Polar Form

Decision Tree

Use rectangular form $z = a + ib$ when:

  • Adding or subtracting complex numbers
  • Finding real and imaginary parts
  • Simple algebraic manipulations

Use polar form $z = r(\cos\theta + i\sin\theta)$ when:

  • Multiplying or dividing complex numbers
  • Finding powers and roots
  • Geometric problems involving angles
  • Using De Moivre’s theorem

Key insight: Choose the form that makes your calculation easier!


Practice Problems

Level 1: Foundation (NCERT)

Problem 1.1

Find the modulus and argument of $z = 1 - i$.

Solution:

Modulus: $|z| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$

Argument: $z$ is in Quadrant IV ($a > 0, b < 0$)

$\theta = -\tan^{-1}\left(\frac{1}{1}\right) = -\frac{\pi}{4}$

Answer: $|z| = \sqrt{2}$, $\arg(z) = -\frac{\pi}{4}$

Problem 1.2

Express $z = 1 + \sqrt{3}i$ in polar form.

Solution:

$r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = 2$

$\theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}$ (Quadrant I)

Answer: $z = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$

Problem 1.3

If $|z| = 5$ and $\arg(z) = \frac{2\pi}{3}$, find $z$ in rectangular form.

Solution:

$z = 5\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$

$= 5\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$

$= -\frac{5}{2} + \frac{5\sqrt{3}}{2}i$

Answer: $z = -\frac{5}{2} + \frac{5\sqrt{3}}{2}i$

Level 2: JEE Main

Problem 2.1

If $z_1 = 2(\cos 60° + i\sin 60°)$ and $z_2 = 3(\cos 30° + i\sin 30°)$, find $z_1 z_2$ in polar form.

Solution:

Using multiplication rule:

$z_1 z_2 = (2)(3)[\cos(60° + 30°) + i\sin(60° + 30°)]$

$= 6(\cos 90° + i\sin 90°)$

$= 6(0 + i \cdot 1)$

$= 6i$

Answer: $6(\cos 90° + i\sin 90°)$ or $6i$

Problem 2.2

Find the argument of $\frac{1 + i}{1 - i}$.

Solution:

Method 1 (Direct):

$\frac{1+i}{1-i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} = \frac{1 + 2i + i^2}{1 - i^2} = \frac{1 + 2i - 1}{1 + 1} = \frac{2i}{2} = i$

$\arg(i) = \frac{\pi}{2}$

Method 2 (Using argument property):

$\arg\left(\frac{1+i}{1-i}\right) = \arg(1+i) - \arg(1-i)$

$= \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}$

Answer: $\frac{\pi}{2}$

Problem 2.3

If $|z - 3| = 3$, find the maximum value of $|z|$.

Solution:

$|z - 3| = 3$ represents a circle centered at $3$ (on real axis) with radius $3$.

The point on this circle farthest from the origin is at distance:

$|z|_{\text{max}} = |3| + 3 = 6$

(This is the point $z = 6$ on the real axis)

Answer: $6$

Alternatively: Using triangle inequality: $|z| = |z - 3 + 3| \leq |z - 3| + |3| = 3 + 3 = 6$

Level 3: JEE Advanced

Problem 3.1

If $z_1, z_2$ are two complex numbers such that $|z_1| = |z_2|$ and $\arg(z_1) + \arg(z_2) = 0$, prove that $z_1 = \overline{z_2}$.

Solution:

Let $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$

Given: $r_1 = r_2 = r$ and $\theta_1 + \theta_2 = 0$

So $\theta_1 = -\theta_2$

$$z_1 = r[\cos(-\theta_2) + i\sin(-\theta_2)]$$

Using: $\cos(-\theta) = \cos\theta$ and $\sin(-\theta) = -\sin\theta$

$$z_1 = r[\cos\theta_2 - i\sin\theta_2]$$

But $z_2 = r(\cos\theta_2 + i\sin\theta_2)$

So $\overline{z_2} = r(\cos\theta_2 - i\sin\theta_2)$

Therefore, $z_1 = \overline{z_2}$ Proved!

Problem 3.2

If $z = \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}$, find $\arg(z)$ and express $z$ in polar form.

Solution:

Method 1 (Using argument property):

$\arg(z) = \arg(1 - i\sqrt{3}) - \arg(1 + i\sqrt{3})$

For $1 - i\sqrt{3}$: Quadrant IV, $\arg = -\tan^{-1}(\sqrt{3}) = -\frac{\pi}{3}$

For $1 + i\sqrt{3}$: Quadrant I, $\arg = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$

$\arg(z) = -\frac{\pi}{3} - \frac{\pi}{3} = -\frac{2\pi}{3}$

For modulus: $|1 - i\sqrt{3}| = \sqrt{1 + 3} = 2$

$|1 + i\sqrt{3}| = \sqrt{1 + 3} = 2$

$|z| = \frac{2}{2} = 1$

Answer: $z = \cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right) = e^{-i2\pi/3}$

$\arg(z) = -\frac{2\pi}{3}$

Problem 3.3

Prove that if $|z_1 + z_2| = |z_1| + |z_2|$, then $\arg(z_1) = \arg(z_2)$.

Solution:

The equality $|z_1 + z_2| = |z_1| + |z_2|$ in the triangle inequality holds when $z_1$ and $z_2$ are in the same direction from origin.

This means $z_2 = k z_1$ for some positive real $k > 0$.

Let $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$

If $z_2 = k z_1$, then: $r_2 e^{i\theta_2} = k r_1 e^{i\theta_1}$

Comparing moduli: $r_2 = kr_1$ ✓

Comparing arguments: $e^{i\theta_2} = e^{i\theta_1}$

Therefore: $\theta_2 = \theta_1$ (up to multiples of $2\pi$)

Hence $\arg(z_1) = \arg(z_2)$ Proved!


Quick Revision Box

ConceptFormulaNotes
Modulus$\|z\| = \sqrt{a^2 + b^2}$Distance from origin
Argument$\tan\theta = \frac{b}{a}$Check quadrant!
Polar form$z = r(\cos\theta + i\sin\theta)$$r = \|z\|, \theta = \arg(z)$
Exponential form$z = re^{i\theta}$Euler’s formula
Multiplication$\|z_1z_2\| = \|z_1\|\|z_2\|$Multiply moduli
$\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$Add arguments
Division$\|\frac{z_1}{z_2}\| = \frac{\|z_1\|}{\|z_2\|}$Divide moduli
$\arg(\frac{z_1}{z_2}) = \arg(z_1) - \arg(z_2)$Subtract arguments
Conjugate$\arg(\bar{z}) = -\arg(z)$Reflection
Triangle inequality$\|z_1 + z_2\| \leq \|z_1\| + \|z_2\|$Fundamental

Within Complex Numbers Chapter

Math Connections

Physics Applications

  • AC Circuits — Impedance in polar form
  • Wave Motion — Amplitude and phase
  • Oscillations — Simple Harmonic Motion representation

Teacher’s Summary

Key Takeaways
  1. Modulus $|z|$ is the distance from origin; use Pythagorean theorem
  2. Argument $\arg(z)$ is the angle from positive real axis; always check quadrant!
  3. Polar form $z = r(\cos\theta + i\sin\theta)$ uses modulus and argument
  4. Euler’s formula $e^{i\theta} = \cos\theta + i\sin\theta$ gives exponential form
  5. Multiplication/Division: Multiply/divide moduli, add/subtract arguments — polar form makes this trivial!

“Polar form is the secret weapon for complex number calculations — master it and JEE problems become simple!”

Exam Strategy: For multiplication, division, powers, roots — immediately convert to polar form. For addition, subtraction — use rectangular form. Choose wisely!