Coordinate Geometry

Master straight lines, circles, and conic sections (parabola, ellipse, hyperbola) for JEE Mathematics.

Coordinate Geometry provides algebraic tools to study geometric figures. This topic is heavily tested in JEE.

Overview

graph TD
    A[Coordinate Geometry] --> B[Basics]
    A --> C[Straight Lines]
    A --> D[Circles]
    A --> E[Conic Sections]
    E --> E1[Parabola]
    E --> E2[Ellipse]
    E --> E3[Hyperbola]

Basic Concepts

Distance Formula

$$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$

Section Formula

Point dividing line joining $(x_1, y_1)$ and $(x_2, y_2)$ in ratio $m:n$:

Internal division:

$$\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$$

External division:

$$\left(\frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n}\right)$$

Midpoint

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

Centroid of Triangle

$$G = \left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$$

Straight Lines

Slope

$$m = \tan\theta = \frac{y_2-y_1}{x_2-x_1}$$

Forms of Line Equation

FormEquation
Slope-intercept$y = mx + c$
Point-slope$y - y_1 = m(x - x_1)$
Two-point$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$
Intercept$\frac{x}{a} + \frac{y}{b} = 1$
Normal$x\cos\alpha + y\sin\alpha = p$
General$ax + by + c = 0$

Angle Between Two Lines

$$\boxed{\tan\theta = \left|\frac{m_1 - m_2}{1 + m_1m_2}\right|}$$

Parallel lines: $m_1 = m_2$ Perpendicular lines: $m_1 \cdot m_2 = -1$

Distance of Point from Line

Distance of $(x_1, y_1)$ from $ax + by + c = 0$:

$$\boxed{d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}}$$

Distance Between Parallel Lines

For $ax + by + c_1 = 0$ and $ax + by + c_2 = 0$:

$$d = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$$
JEE Tip

For foot of perpendicular from $(x_1, y_1)$ to $ax + by + c = 0$:

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = -\frac{ax_1 + by_1 + c}{a^2 + b^2}$$

Circles

Standard Form

$$\boxed{(x-h)^2 + (y-k)^2 = r^2}$$

Center: $(h, k)$, Radius: $r$

General Form

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

Center: $(-g, -f)$, Radius: $\sqrt{g^2 + f^2 - c}$

Equation from Diameter Endpoints

If $(x_1, y_1)$ and $(x_2, y_2)$ are endpoints:

$$(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0$$

Position of Point w.r.t. Circle

For point $(x_1, y_1)$ and circle $S = x^2 + y^2 + 2gx + 2fy + c$:

  • $S_1 < 0$: Inside
  • $S_1 = 0$: On circle
  • $S_1 > 0$: Outside

Tangent to Circle

At point $(x_1, y_1)$ on circle $x^2 + y^2 = a^2$:

$$xx_1 + yy_1 = a^2$$

Condition for tangency: Line $y = mx + c$ is tangent to $x^2 + y^2 = a^2$ if:

$$c^2 = a^2(1 + m^2)$$

Parabola

Standard Form: $y^2 = 4ax$

ElementValue
Vertex$(0, 0)$
Focus$(a, 0)$
Directrix$x = -a$
Latus rectum$4a$
Eccentricity$e = 1$

Other Forms

EquationOpens
$y^2 = 4ax$Right
$y^2 = -4ax$Left
$x^2 = 4ay$Upward
$x^2 = -4ay$Downward

Tangent

At $(x_1, y_1)$: $yy_1 = 2a(x + x_1)$

For $y = mx + c$ to be tangent: $c = \frac{a}{m}$

Ellipse

Standard Form: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b)

ElementValue
Center$(0, 0)$
Foci$(\pm c, 0)$ where $c = ae$
Vertices$(\pm a, 0)$
Eccentricity$e = \sqrt{1 - \frac{b^2}{a^2}}$
Latus rectum$\frac{2b^2}{a}$
Directrix$x = \pm\frac{a}{e}$

Key Relation

$$\boxed{b^2 = a^2(1 - e^2)}$$

or

$$c^2 = a^2 - b^2$$

Tangent

At $(x_1, y_1)$: $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$

Condition for tangency: $c^2 = a^2m^2 + b^2$

JEE Tip
Sum of focal distances of any point on ellipse = 2a (major axis length)

Hyperbola

Standard Form: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

ElementValue
Center$(0, 0)$
Foci$(\pm c, 0)$ where $c = ae$
Vertices$(\pm a, 0)$
Eccentricity$e = \sqrt{1 + \frac{b^2}{a^2}}$
Latus rectum$\frac{2b^2}{a}$
Asymptotes$y = \pm\frac{b}{a}x$

Key Relation

$$\boxed{b^2 = a^2(e^2 - 1)}$$

or

$$c^2 = a^2 + b^2$$

Rectangular Hyperbola

When $a = b$: $x^2 - y^2 = a^2$

  • Eccentricity: $e = \sqrt{2}$
  • Asymptotes: $y = \pm x$

Conjugate Hyperbola

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

Eccentricities of hyperbola and conjugate: $\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$

Practice Problems

  1. Find the equation of line passing through $(2, 3)$ perpendicular to $3x + 4y = 12$.

  2. Find the radius of circle passing through $(3, 4)$ with center at $(1, 2)$.

  3. Find the eccentricity of ellipse $4x^2 + 9y^2 = 36$.

  4. Find the equation of tangent to parabola $y^2 = 8x$ parallel to $x - y + 3 = 0$.

Quick Check
Why is the eccentricity of a parabola always 1?

Further Reading