Homogeneous Differential Equations

Complete guide to solving homogeneous differential equations using substitution method

Homogeneous Differential Equations

Introduction

A Homogeneous Differential Equation is a special type of first-order DE that can be solved using a specific substitution technique. These DEs have a unique property involving the degrees of terms.


Homogeneous Function

Definition: A function $f(x, y)$ is called homogeneous of degree $n$ if:

$$\boxed{f(\lambda x, \lambda y) = \lambda^n f(x, y)}$$

for all $\lambda \neq 0$.

Examples of Homogeneous Functions

Example 1: $f(x, y) = x^2 + xy + y^2$

Check: $f(\lambda x, \lambda y) = (\lambda x)^2 + (\lambda x)(\lambda y) + (\lambda y)^2$

$= \lambda^2 x^2 + \lambda^2 xy + \lambda^2 y^2 = \lambda^2(x^2 + xy + y^2) = \lambda^2 f(x, y)$

Homogeneous of degree 2

Example 2: $f(x, y) = \frac{x^3 - y^3}{x^2 + y^2}$

Numerator: $(\lambda x)^3 - (\lambda y)^3 = \lambda^3(x^3 - y^3)$ (degree 3)

Denominator: $(\lambda x)^2 + (\lambda y)^2 = \lambda^2(x^2 + y^2)$ (degree 2)

$f(\lambda x, \lambda y) = \frac{\lambda^3(x^3 - y^3)}{\lambda^2(x^2 + y^2)} = \lambda \cdot \frac{x^3 - y^3}{x^2 + y^2} = \lambda f(x, y)$

Homogeneous of degree 1

Example 3: $f(x, y) = x + y + 1$ (NOT homogeneous)

$f(\lambda x, \lambda y) = \lambda x + \lambda y + 1 \neq \lambda^n(x + y + 1)$

Not homogeneous ✗ (constant term breaks homogeneity)

Interactive Demo: Visualize Homogeneous DE Solutions

Plot solution curves for homogeneous differential equations.


Homogeneous Differential Equation

Definition: A differential equation of the form:

$$\boxed{\frac{dy}{dx} = \frac{f(x, y)}{g(x, y)}}$$

is called homogeneous if both $f(x, y)$ and $g(x, y)$ are homogeneous functions of the same degree.

Alternative Form

A homogeneous DE can always be written as:

$$\boxed{\frac{dy}{dx} = F\left(\frac{y}{x}\right)}$$

where $F$ is some function of the ratio $\frac{y}{x}$.


Standard Forms

Form 1: Explicit Ratio

$$\boxed{\frac{dy}{dx} = f\left(\frac{y}{x}\right)}$$

Form 2: Fraction of Homogeneous Functions

$$\boxed{\frac{dy}{dx} = \frac{ax + by}{cx + dy}}$$

(degree 1 in both numerator and denominator)

Form 3: General Homogeneous

$$\boxed{(ax + by)dx + (cx + dy)dy = 0}$$

where degrees match


Solution Method

Substitution Technique

Key Substitution:

$$\boxed{y = vx \quad \text{or} \quad v = \frac{y}{x}}$$

where $v$ is a new variable.

Step-by-Step Procedure

Step 1: Verify the DE is homogeneous

Step 2: Substitute $y = vx$

Step 3: Differentiate: $\frac{dy}{dx} = v + x\frac{dv}{dx}$

Step 4: Substitute in the original DE

Step 5: Simplify to get a variable separable DE in $v$ and $x$

Step 6: Solve for $v$ using variable separable method

Step 7: Replace $v = \frac{y}{x}$ to get solution in terms of $x$ and $y$


Memory Tricks

🎯 Homogeneity Check

“All terms same degree”:

  • Count powers in each term
  • All terms should have same total degree
  • Or check: Can you write as function of $\frac{y}{x}$?

Quick Test: Replace $x$ with $\lambda x$ and $y$ with $\lambda y$

  • If you can factor out $\lambda^n$, it’s homogeneous of degree $n$

🎯 Substitution Memory

“V for Variable, Y over X”:

  • $v = \frac{y}{x}$ (y over x)
  • So $y = vx$
  • Derivative: $\frac{dy}{dx} = v + x\frac{dv}{dx}$ ("V plus X times dv/dx")

🎯 After Substitution

“Homogeneous → Separable”:

  • Homogeneous DE + Substitution = Variable Separable DE
  • Then use standard separation technique

Common Mistakes to Avoid

❌ Mistake 1: Wrong Homogeneity Check

Wrong: $\frac{dy}{dx} = \frac{x^2 + y}{x}$ is homogeneous ✗

Correct: Numerator has degree 2 and 1 (not same), denominator has degree 1. Not all terms have same degree → Not homogeneous

❌ Mistake 2: Incorrect Substitution Derivative

Wrong: If $y = vx$, then $\frac{dy}{dx} = v$ ✗

Correct: $\frac{dy}{dx} = \frac{d}{dx}(vx) = v + x\frac{dv}{dx}$ (product rule!) ✓

❌ Mistake 3: Forgetting to Replace $v$

Wrong: Final answer in terms of $v$ and $x$ ✗

Correct: Replace $v = \frac{y}{x}$ to get answer in $x$ and $y$ ✓

❌ Mistake 4: Wrong Degree Count

Wrong: In $x^2y + xy^2$, degree = 2 + 2 = 4 ✗

Correct: In $x^2y$, degree = 2 + 1 = 3; in $xy^2$, degree = 1 + 2 = 3 ✓ (Add powers within each term, don’t add across terms)


Solved Examples

Example 1: Basic Homogeneous (JEE Main)

Solve: $\frac{dy}{dx} = \frac{y}{x}$

Solution:

Check homogeneity: $\frac{dy}{dx} = \frac{y}{x}$ (degree 1 / degree 1) ✓ Homogeneous

Substitute $y = vx$:

$$\frac{dy}{dx} = v + x\frac{dv}{dx}$$

Original DE becomes:

$$v + x\frac{dv}{dx} = \frac{vx}{x} = v$$ $$x\frac{dv}{dx} = 0$$ $$\frac{dv}{dx} = 0$$ $$v = C$$

Replace $v = \frac{y}{x}$:

$$\boxed{y = Cx}$$

Example 2: Standard Form (JEE Main)

Solve: $\frac{dy}{dx} = \frac{x + y}{x}$

Solution:

Rewrite: $\frac{dy}{dx} = 1 + \frac{y}{x}$

This is of the form $F(y/x)$ → Homogeneous ✓

Substitute $y = vx$:

$$v + x\frac{dv}{dx} = 1 + v$$ $$x\frac{dv}{dx} = 1$$ $$dv = \frac{dx}{x}$$

Integrate:

$$v = \ln|x| + C$$

Replace $v = \frac{y}{x}$:

$$\frac{y}{x} = \ln|x| + C$$ $$\boxed{y = x\ln|x| + Cx}$$

Example 3: With Initial Condition (JEE Main)

Solve: $(x^2 + y^2)dx = 2xy dy$ with $y(1) = 0$

Solution:

Rewrite:

$$\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$$

Check: Numerator degree = 2, denominator degree = 2 → Homogeneous ✓

Substitute $y = vx$:

$$v + x\frac{dv}{dx} = \frac{x^2 + v^2x^2}{2x \cdot vx} = \frac{x^2(1 + v^2)}{2vx^2} = \frac{1 + v^2}{2v}$$ $$x\frac{dv}{dx} = \frac{1 + v^2}{2v} - v = \frac{1 + v^2 - 2v^2}{2v} = \frac{1 - v^2}{2v}$$

Separate variables:

$$\frac{2v dv}{1 - v^2} = \frac{dx}{x}$$

Integrate:

$$-\ln|1 - v^2| = \ln|x| + C_1$$ $$\ln|1 - v^2| = -\ln|x| + C$$ $$\ln|1 - v^2| + \ln|x| = C$$ $$\ln|x(1 - v^2)| = C$$ $$x(1 - v^2) = A$$

where $A = \pm e^C$

Replace $v = \frac{y}{x}$:

$$x\left(1 - \frac{y^2}{x^2}\right) = A$$ $$x - \frac{y^2}{x} = A$$ $$x^2 - y^2 = Ax$$

Using $y(1) = 0$:

$$1 - 0 = A(1)$$

, so $A = 1$

Solution: $\boxed{x^2 - y^2 = x}$


Example 4: Trigonometric Form (JEE Advanced)

Solve: $x\frac{dy}{dx} = y + x\sin\left(\frac{y}{x}\right)$

Solution:

Rewrite:

$$\frac{dy}{dx} = \frac{y}{x} + \sin\left(\frac{y}{x}\right) = F\left(\frac{y}{x}\right)$$

Homogeneous ✓

Substitute $y = vx$:

$$v + x\frac{dv}{dx} = v + \sin v$$ $$x\frac{dv}{dx} = \sin v$$

Separate:

$$\frac{dv}{\sin v} = \frac{dx}{x}$$ $$\csc v \, dv = \frac{dx}{x}$$

Integrate:

$$\int \csc v \, dv = \int \frac{dx}{x}$$ $$\ln|\csc v - \cot v| = \ln|x| + C_1$$ $$\ln|\csc v - \cot v| - \ln|x| = C$$ $$\ln\left|\frac{\csc v - \cot v}{x}\right| = C$$

Replace $v = \frac{y}{x}$:

$$\boxed{\ln\left|\frac{\csc(y/x) - \cot(y/x)}{x}\right| = C}$$

or in simplified form:

$$\boxed{\csc\left(\frac{y}{x}\right) - \cot\left(\frac{y}{x}\right) = Cx}$$

Example 5: Disguised Homogeneous (JEE Advanced)

Solve: $(x - y)dy = (x + y)dx$

Solution:

Rewrite:

$$\frac{dy}{dx} = \frac{x + y}{x - y}$$

Check: Numerator degree = 1, denominator degree = 1 → Homogeneous ✓

Substitute $y = vx$:

$$v + x\frac{dv}{dx} = \frac{x + vx}{x - vx} = \frac{x(1 + v)}{x(1 - v)} = \frac{1 + v}{1 - v}$$ $$x\frac{dv}{dx} = \frac{1 + v}{1 - v} - v = \frac{1 + v - v(1 - v)}{1 - v} = \frac{1 + v - v + v^2}{1 - v} = \frac{1 + v^2}{1 - v}$$

Separate:

$$\frac{(1 - v)dv}{1 + v^2} = \frac{dx}{x}$$ $$\frac{dv}{1 + v^2} - \frac{v \, dv}{1 + v^2} = \frac{dx}{x}$$

Integrate:

$$\tan^{-1}v - \frac{1}{2}\ln(1 + v^2) = \ln|x| + C$$

Replace $v = \frac{y}{x}$:

$$\boxed{\tan^{-1}\left(\frac{y}{x}\right) - \frac{1}{2}\ln\left(1 + \frac{y^2}{x^2}\right) = \ln|x| + C}$$

Simplify:

$$\boxed{\tan^{-1}\left(\frac{y}{x}\right) - \frac{1}{2}\ln(x^2 + y^2) + \ln|x| = C}$$

Practice Problems

Level 1: JEE Main Basics

Problem 1.1: Solve $x\frac{dy}{dx} = y$.

Solution

$\frac{dy}{dx} = \frac{y}{x}$ (Homogeneous)

$y = vx \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}$

$v + x\frac{dv}{dx} = v$

$x\frac{dv}{dx} = 0 \Rightarrow v = C$

$\frac{y}{x} = C$

Answer: $y = Cx$

Problem 1.2: Solve $\frac{dy}{dx} = \frac{x - y}{x + y}$.

Solution

Homogeneous (both degree 1)

$y = vx$: $v + x\frac{dv}{dx} = \frac{x - vx}{x + vx} = \frac{1 - v}{1 + v}$

$x\frac{dv}{dx} = \frac{1 - v}{1 + v} - v = \frac{1 - v - v(1 + v)}{1 + v} = \frac{1 - v - v - v^2}{1 + v} = \frac{1 - 2v - v^2}{1 + v}$

$\frac{(1 + v)dv}{1 - 2v - v^2} = \frac{dx}{x}$

Wait, let me recalculate: $\frac{1 - v}{1 + v} - v = \frac{1 - v - v - v^2}{1 + v} = \frac{1 - 2v - v^2}{1 + v}$

Note: $1 - 2v - v^2 = -(v^2 + 2v - 1)$

$\frac{(1 + v)dv}{-(v^2 + 2v - 1)} = \frac{dx}{x}$

This requires partial fractions or completing square. For JEE Main, numerical answer expected.

Problem 1.3: Check if $\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$ is homogeneous.

Solution

Numerator: $x^2 + y^2$ has degree 2

Denominator: $xy$ has degree 2

Both same degree → Homogeneous


Level 2: JEE Main Advanced

Problem 2.1: Solve $x dy - y dx = \sqrt{x^2 + y^2} dx$.

Solution

$x dy = (y + \sqrt{x^2 + y^2})dx$

$\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x}$

Divide by $x$: $\frac{dy}{dx} = \frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}}$

Let $y = vx$: $v + x\frac{dv}{dx} = v + \sqrt{1 + v^2}$

$x\frac{dv}{dx} = \sqrt{1 + v^2}$

$\frac{dv}{\sqrt{1 + v^2}} = \frac{dx}{x}$

$\sinh^{-1}(v) = \ln|x| + C$ or $\ln(v + \sqrt{1 + v^2}) = \ln|x| + C$

$v + \sqrt{1 + v^2} = Ax$

$\frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}} = Ax$

$y + \sqrt{x^2 + y^2} = Ax^2$

Problem 2.2: Solve $(x^2 - y^2)dx + 2xy dy = 0$ with $y(1) = 1$.

Solution

$\frac{dy}{dx} = -\frac{x^2 - y^2}{2xy}$

Homogeneous (degree 2/2)

$y = vx$: $v + x\frac{dv}{dx} = -\frac{x^2 - v^2x^2}{2x \cdot vx} = -\frac{1 - v^2}{2v}$

$x\frac{dv}{dx} = -\frac{1 - v^2}{2v} - v = -\frac{1 - v^2 + 2v^2}{2v} = -\frac{1 + v^2}{2v}$

$\frac{2v \, dv}{1 + v^2} = -\frac{dx}{x}$

$\ln(1 + v^2) = -\ln|x| + C$

$\ln(1 + v^2) + \ln|x| = C$

$(1 + v^2)x = A$

$x + xv^2 = A$

$x + \frac{y^2}{x} = A$

$x^2 + y^2 = Ax$

Using $y(1) = 1$: $1 + 1 = A \Rightarrow A = 2$

Answer: $x^2 + y^2 = 2x$

Problem 2.3: Solve $\frac{dy}{dx} = \frac{y}{x} + \tan\left(\frac{y}{x}\right)$.

Solution

Homogeneous (function of $y/x$)

$y = vx$: $v + x\frac{dv}{dx} = v + \tan v$

$x\frac{dv}{dx} = \tan v$

$\frac{dv}{\tan v} = \frac{dx}{x}$

$\cot v \, dv = \frac{dx}{x}$

$\ln|\sin v| = \ln|x| + C$

$\sin v = Ax$

$\sin\left(\frac{y}{x}\right) = Ax$


Level 3: JEE Advanced

Problem 3.1: Solve $x\frac{dy}{dx} = y - x\cos^2\left(\frac{y}{x}\right)$.

Solution

$\frac{dy}{dx} = \frac{y}{x} - \cos^2\left(\frac{y}{x}\right)$

Homogeneous

$y = vx$: $v + x\frac{dv}{dx} = v - \cos^2 v$

$x\frac{dv}{dx} = -\cos^2 v$

$\frac{dv}{\cos^2 v} = -\frac{dx}{x}$

$\sec^2 v \, dv = -\frac{dx}{x}$

$\tan v = -\ln|x| + C$

$\tan\left(\frac{y}{x}\right) = -\ln|x| + C$

Problem 3.2: Solve $2xy dy = (x^2 + 3y^2)dx$ and find particular solution through $(1, 1)$.

Solution

$\frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy}$

Homogeneous

$y = vx$: $v + x\frac{dv}{dx} = \frac{x^2 + 3v^2x^2}{2x \cdot vx} = \frac{1 + 3v^2}{2v}$

$x\frac{dv}{dx} = \frac{1 + 3v^2}{2v} - v = \frac{1 + 3v^2 - 2v^2}{2v} = \frac{1 + v^2}{2v}$

$\frac{2v \, dv}{1 + v^2} = \frac{dx}{x}$

$\ln(1 + v^2) = \ln|x| + C$

$(1 + v^2) = Ax$

$1 + \frac{y^2}{x^2} = Ax$

$x^2 + y^2 = Ax^3$

Using $(1, 1)$: $1 + 1 = A \Rightarrow A = 2$

Answer: $x^2 + y^2 = 2x^3$

Problem 3.3: Find the orthogonal trajectories of the family of curves $xy = c$.

Solution

Given family: $xy = c$

Differentiate: $y + x\frac{dy}{dx} = 0$

So: $\frac{dy}{dx} = -\frac{y}{x}$

For orthogonal trajectories, slope is negative reciprocal: $\frac{dy}{dx} = \frac{x}{y}$

This is separable: $y \, dy = x \, dx$

$\frac{y^2}{2} = \frac{x^2}{2} + C$

$y^2 - x^2 = K$

Orthogonal trajectories: Family of hyperbolas $y^2 - x^2 = K$


Recognition Checklist

A DE is homogeneous if:

  • Can be written as $\frac{dy}{dx} = F(y/x)$
  • Both numerator and denominator have same degree
  • Replacing $x$ with $\lambda x$ and $y$ with $\lambda y$ gives $\lambda^n$ factor
  • All terms have same total degree in $x$ and $y$

Solution Strategy Flowchart

Is DE homogeneous?
     
   Yes  Substitute y = vx
     
Differentiate: dy/dx = v + x(dv/dx)
     
Substitute in original DE
     
Simplify  Get variable separable in v and x
     
Solve using separation method
     
Replace v = y/x
     
Final solution

Cross-References


Quick Revision Points

  1. Homogeneous if same degree in numerator and denominator
  2. Or if can write as $F(y/x)$
  3. Substitute $y = vx$ always
  4. Remember: $\frac{dy}{dx} = v + x\frac{dv}{dx}$ (product rule!)
  5. After substitution → Variable separable
  6. Always replace $v = y/x$ at the end

Last updated: November 15, 2025