Integral Calculus

Master integration techniques, definite integrals, and area under curves for JEE Mathematics.

Integration is the reverse process of differentiation. It’s used to find areas, volumes, and solve differential equations.

Overview

graph TD
    A[Integral Calculus] --> B[Indefinite Integrals]
    A --> C[Definite Integrals]
    B --> B1[Standard Forms]
    B --> B2[Methods]
    B2 --> B2a[Substitution]
    B2 --> B2b[By Parts]
    B2 --> B2c[Partial Fractions]
    C --> C1[Properties]
    C --> C2[Area Under Curves]

Indefinite Integrals

Definition

$$\int f(x)\,dx = F(x) + C$$

where $F'(x) = f(x)$ and $C$ is the constant of integration.

Standard Integrals

Basic Forms

FunctionIntegral
$x^n$ (n ≠ -1)$\frac{x^{n+1}}{n+1} + C$
$\frac{1}{x}$$\ln
$e^x$$e^x + C$
$a^x$$\frac{a^x}{\ln a} + C$

Trigonometric Integrals

FunctionIntegral
$\sin x$$-\cos x + C$
$\cos x$$\sin x + C$
$\sec^2 x$$\tan x + C$
$\csc^2 x$$-\cot x + C$
$\sec x \tan x$$\sec x + C$
$\csc x \cot x$$-\csc x + C$
$\tan x$$\ln
$\cot x$$\ln
$\sec x$$\ln
$\csc x$$\ln

Inverse Trigonometric Forms

$$\int \frac{1}{\sqrt{1-x^2}}\,dx = \sin^{-1}x + C$$ $$\int \frac{1}{1+x^2}\,dx = \tan^{-1}x + C$$ $$\int \frac{1}{x\sqrt{x^2-1}}\,dx = \sec^{-1}x + C$$

Special Integrals

Type 1: $\int \frac{dx}{x^2 + a^2}$

$$\boxed{\int \frac{dx}{x^2 + a^2} = \frac{1}{a}\tan^{-1}\frac{x}{a} + C}$$

Type 2: $\int \frac{dx}{x^2 - a^2}$

$$\boxed{\int \frac{dx}{x^2 - a^2} = \frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right| + C}$$

Type 3: $\int \frac{dx}{\sqrt{a^2 - x^2}}$

$$\boxed{\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\frac{x}{a} + C}$$

Type 4: $\int \frac{dx}{\sqrt{x^2 + a^2}}$

$$\boxed{\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln|x + \sqrt{x^2 + a^2}| + C}$$

Type 5: $\int \frac{dx}{\sqrt{x^2 - a^2}}$

$$\boxed{\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln|x + \sqrt{x^2 - a^2}| + C}$$
JEE Tip
For integrals of the form $\int \frac{dx}{ax^2 + bx + c}$, complete the square first to convert to standard forms.

Integration by Substitution

Method

If $\int f(x)\,dx$ is difficult, substitute $x = g(t)$:

$$\int f(x)\,dx = \int f(g(t)) \cdot g'(t)\,dt$$

Common Substitutions

ExpressionSubstitution
$\sqrt{a^2 - x^2}$$x = a\sin\theta$
$\sqrt{a^2 + x^2}$$x = a\tan\theta$
$\sqrt{x^2 - a^2}$$x = a\sec\theta$
$a + b\cos x$ or $a + b\sin x$$\tan\frac{x}{2} = t$

Universal Substitution

For $\int R(\sin x, \cos x)\,dx$, use $\tan\frac{x}{2} = t$:

$$\sin x = \frac{2t}{1+t^2}, \quad \cos x = \frac{1-t^2}{1+t^2}, \quad dx = \frac{2\,dt}{1+t^2}$$

Integration by Parts

$$\boxed{\int u\,dv = uv - \int v\,du}$$

ILATE Rule

Choose $u$ in order of priority:

  • Inverse trigonometric
  • Logarithmic
  • Algebraic
  • Trigonometric
  • Exponential

Special Cases

$$\int e^x[f(x) + f'(x)]\,dx = e^x f(x) + C$$
JEE Tip
For $\int e^{ax}\sin bx\,dx$ or $\int e^{ax}\cos bx\,dx$, apply integration by parts twice and solve the resulting equation.

Partial Fractions

For $\frac{P(x)}{Q(x)}$ where degree of $P <$ degree of $Q$:

Case 1: Linear Factors

$$\frac{1}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}$$

Case 2: Repeated Linear Factors

$$\frac{1}{(x-a)^2(x-b)} = \frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$$

Case 3: Quadratic Factors

$$\frac{1}{(x^2+a^2)(x-b)} = \frac{Ax+B}{x^2+a^2} + \frac{C}{x-b}$$

Definite Integrals

Definition (Fundamental Theorem)

$$\boxed{\int_a^b f(x)\,dx = F(b) - F(a)}$$

where $F'(x) = f(x)$

Properties

  1. $\int_a^b f(x)\,dx = -\int_b^a f(x)\,dx$

  2. $\int_a^b f(x)\,dx = \int_a^c f(x)\,dx + \int_c^b f(x)\,dx$

  3. $\int_a^b f(x)\,dx = \int_a^b f(a+b-x)\,dx$

  4. $\int_0^a f(x)\,dx = \int_0^a f(a-x)\,dx$

  5. $\int_0^{2a} f(x)\,dx = \int_0^a f(x)\,dx + \int_0^a f(2a-x)\,dx$

Even and Odd Functions

For even function $f(-x) = f(x)$:

$$\int_{-a}^a f(x)\,dx = 2\int_0^a f(x)\,dx$$

For odd function $f(-x) = -f(x)$:

$$\int_{-a}^a f(x)\,dx = 0$$

Periodic Functions

If $f(x)$ has period $T$:

$$\int_0^{nT} f(x)\,dx = n\int_0^T f(x)\,dx$$

Area Under Curves

Basic Formula

Area between curve $y = f(x)$, x-axis, and lines $x = a$, $x = b$:

$$A = \int_a^b |f(x)|\,dx$$

Area Between Two Curves

$$A = \int_a^b |f(x) - g(x)|\,dx$$

Standard Areas

CurveArea
Circle: $x^2 + y^2 = a^2$$\pi a^2$
Ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$\pi ab$
Parabola: $y^2 = 4ax$ from 0 to $x$$\frac{4}{3}x\sqrt{ax}$

Practice Problems

  1. Evaluate: $\int \frac{x^2 + 1}{x^4 + 1}\,dx$

  2. Find: $\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x}\,dx$

  3. Calculate: $\int e^x(\tan x + \sec^2 x)\,dx$

  4. Find the area bounded by $y = x^2$ and $y = x$.

Quick Check
Verify that $\int_0^{\pi} x\sin x\,dx = \pi$ using property 4.

Further Reading