Indefinite Integrals: Antiderivatives and Standard Forms

Master indefinite integration with standard formulas, antiderivatives, and integration techniques for JEE Main and Advanced

The Hook: Reversing a Speedometer

Connect: Real Life → Mathematics

Imagine you’re watching the car chase scene from Fast X (2023). The speedometer shows the car’s speed changing constantly—sometimes 60 km/h, sometimes 100 km/h. Now here’s the question:

If someone gives you only the speedometer readings (speed at every instant), can you figure out the total distance traveled?

This is exactly what integration does! If differentiation gives you the rate of change (speed from distance), integration reverses it to get the accumulated quantity (distance from speed).

In JEE, this concept appears in 3-4 questions every year—making it a high-yield topic.


The Core Concept

What is an Indefinite Integral?

An indefinite integral (or antiderivative) is the reverse operation of differentiation.

$$\boxed{\int f(x) \, dx = F(x) + C}$$

where:

  • $\int$ is the integration symbol (elongated S for “sum”)
  • $f(x)$ is the integrand (function to integrate)
  • $dx$ indicates integration with respect to $x$
  • $F(x)$ is the antiderivative such that $\frac{d}{dx}F(x) = f(x)$
  • $C$ is the constant of integration (crucial!)

In simple terms: Integration asks: “Which function, when differentiated, gives me $f(x)$?”

Why the “+C”?

The Mystery of the Constant

When you differentiate $x^2$, you get $2x$. When you differentiate $x^2 + 5$, you still get $2x$. When you differentiate $x^2 - 100$, you still get $2x$!

The derivative “kills” the constant. So when reversing (integrating), we must add back an arbitrary constant $C$ because we don’t know what was lost.

JEE Trap: Forgetting $+C$ in indefinite integrals costs you marks!


Interactive Demo: Visualize Antiderivatives

Plot a function like $f(x) = 2x$ and see how its antiderivative $F(x) = x^2 + C$ changes with different values of C. This shows why we need the constant of integration!


Standard Integral Formulas

Power Functions

$$\boxed{\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1}$$

Memory Trick:Increase Power, Divide” → IPD Rule

Special case:

$$\boxed{\int x^{-1} \, dx = \int \frac{1}{x} \, dx = \ln|x| + C}$$

Exponential Functions

$$\boxed{\int e^x \, dx = e^x + C}$$ $$\boxed{\int a^x \, dx = \frac{a^x}{\ln a} + C, \quad a > 0, a \neq 1}$$

Pattern: $e^x$ is special—it’s its own derivative AND its own integral!

Trigonometric Functions

FunctionIntegral
$\int \sin x \, dx$$-\cos x + C$
$\int \cos x \, dx$$\sin x + C$
$\int \sec^2 x \, dx$$\tan x + C$
$\int \csc^2 x \, dx$$-\cot x + C$
$\int \sec x \tan x \, dx$$\sec x + C$
$\int \csc x \cot x \, dx$$-\csc x + C$

Memory Trick:Sign Changes for Sin Cos” → Sine’s integral has a negative sign!

Inverse Trigonometric Functions

$$\boxed{\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C}$$ $$\boxed{\int \frac{1}{1+x^2} \, dx = \tan^{-1} x + C}$$ $$\boxed{\int \frac{1}{x\sqrt{x^2-1}} \, dx = \sec^{-1} x + C}$$

Properties of Indefinite Integrals

Linearity Properties

  1. Constant Multiple Rule:

    $$\int k \cdot f(x) \, dx = k \int f(x) \, dx$$
  2. Sum/Difference Rule:

    $$\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$
Example 1: Using Properties

Problem: Find $\int (3x^2 - 5\cos x + 2e^x) \, dx$

Solution:

$$\begin{aligned} \int (3x^2 - 5\cos x + 2e^x) \, dx &= 3\int x^2 \, dx - 5\int \cos x \, dx + 2\int e^x \, dx \\ &= 3 \cdot \frac{x^3}{3} - 5\sin x + 2e^x + C \\ &= x^3 - 5\sin x + 2e^x + C \end{aligned}$$

Non-Linear Operations (Important!)

Trap #1: Integration is NOT Distributive

WRONG: $\int [f(x) \cdot g(x)] \, dx \neq \int f(x) \, dx \cdot \int g(x) \, dx$

WRONG: $\int \frac{f(x)}{g(x)} \, dx \neq \frac{\int f(x) \, dx}{\int g(x) \, dx}$

Example: $\int x \cdot e^x \, dx \neq \frac{x^2}{2} \cdot e^x$ (This needs integration by parts!)


Fundamental Integration Techniques

Technique 1: Direct Formula Application

Example 2: Direct Integration

Problem: Evaluate $\int \left(x^4 + \frac{3}{x^2} - \sqrt{x}\right) dx$

Solution:

$$\begin{aligned} \int \left(x^4 + 3x^{-2} - x^{1/2}\right) dx &= \frac{x^5}{5} + 3 \cdot \frac{x^{-1}}{-1} - \frac{x^{3/2}}{3/2} + C \\ &= \frac{x^5}{5} - \frac{3}{x} - \frac{2x^{3/2}}{3} + C \end{aligned}$$

Technique 2: Simplification Before Integration

Example 3: Simplify First

Problem: Find $\int \frac{x^3 + 3x^2 + 3x + 1}{x^2} \, dx$

Solution: First, simplify by dividing:

$$\frac{x^3 + 3x^2 + 3x + 1}{x^2} = x + 3 + \frac{3}{x} + \frac{1}{x^2}$$

Now integrate:

$$\begin{aligned} \int \left(x + 3 + 3x^{-1} + x^{-2}\right) dx &= \frac{x^2}{2} + 3x + 3\ln|x| - \frac{1}{x} + C \end{aligned}$$

Technique 3: Trigonometric Identities

Example 4: Using Identities

Problem: Evaluate $\int \sin^2 x \, dx$

Solution: Use the identity: $\sin^2 x = \frac{1 - \cos 2x}{2}$

$$\begin{aligned} \int \sin^2 x \, dx &= \int \frac{1 - \cos 2x}{2} \, dx \\ &= \frac{1}{2}\int 1 \, dx - \frac{1}{2}\int \cos 2x \, dx \\ &= \frac{x}{2} - \frac{1}{2} \cdot \frac{\sin 2x}{2} + C \\ &= \frac{x}{2} - \frac{\sin 2x}{4} + C \end{aligned}$$

Common Algebraic Manipulations

Rationalization Technique

Example 5: Rationalization

Problem: Find $\int \frac{1}{x + \sqrt{x}} \, dx$

Solution: Rationalize by multiplying by $\frac{\sqrt{x}}{\sqrt{x}}$:

$$\frac{1}{x + \sqrt{x}} = \frac{1}{\sqrt{x}(\sqrt{x} + 1)} = \frac{1}{\sqrt{x}(\sqrt{x} + 1)} \cdot \frac{\sqrt{x} - 1}{\sqrt{x} - 1}$$

Actually, simpler approach: Factor out $\sqrt{x}$:

$$\frac{1}{x + \sqrt{x}} = \frac{1}{\sqrt{x}(\sqrt{x} + 1)}$$

Let $u = \sqrt{x} + 1$ (we’ll learn substitution in the next topic!)

For now, recognize: This splits into partial fractions.


Memory Tricks & Patterns

Master Formula Sheet

The Essential 15 Formulas

Powers:

  1. $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$ (IPD Rule)
  2. $\int \frac{1}{x} \, dx = \ln|x| + C$

Exponentials: 3. $\int e^x \, dx = e^x + C$ 4. $\int a^x \, dx = \frac{a^x}{\ln a} + C$

Trigonometric (The Big 6): 5. $\int \sin x \, dx = -\cos x + C$ (negative!) 6. $\int \cos x \, dx = \sin x + C$ (positive!) 7. $\int \sec^2 x \, dx = \tan x + C$ 8. $\int \csc^2 x \, dx = -\cot x + C$ 9. $\int \sec x \tan x \, dx = \sec x + C$ 10. $\int \csc x \cot x \, dx = -\csc x + C$

Inverse Trigonometric: 11. $\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C$ 12. $\int \frac{-1}{\sqrt{1-x^2}} \, dx = \cos^{-1} x + C$ 13. $\int \frac{1}{1+x^2} \, dx = \tan^{-1} x + C$ 14. $\int \frac{-1}{1+x^2} \, dx = \cot^{-1} x + C$ 15. $\int \frac{1}{|x|\sqrt{x^2-1}} \, dx = \sec^{-1} x + C$

Memorize these 15—they appear in 90% of JEE integration problems!

Sign Pattern for Trig Functions

Mnemonic:Some Cops Have Caught Students Cutting

  • Some = $\sin x$ integrates to negative ($-\cos x$)
  • Cops = $\cos x$ integrates to positive ($\sin x$)
  • Have = (skip)
  • Caught = $\csc^2 x$ integrates to negative ($-\cot x$)
  • Students = $\sec^2 x$ integrates to positive ($\tan x$)
  • Cutting = $\csc x \cot x$ integrates to negative ($-\csc x$)

When to Use Standard Formulas

Decision Tree

Step 1: Can you simplify algebraically?

  • Expand brackets
  • Divide polynomials
  • Use trig identities

Step 2: Does it match a standard form?

  • Check the master list of 15 formulas
  • Look for $\frac{f'(x)}{f(x)}$ pattern → $\ln|f(x)|$

Step 3: Need advanced technique?


Common Mistakes to Avoid

Trap #1: Forgetting the Constant

WRONG: $\int 2x \, dx = x^2$ CORRECT: $\int 2x \, dx = x^2 + C$

Why it matters: In JEE, if a problem asks for an indefinite integral, missing $+C$ is marked wrong!

Trap #2: Power Rule for n = -1

WRONG: $\int x^{-1} \, dx = \frac{x^0}{0} + C$ (Undefined!) CORRECT: $\int \frac{1}{x} \, dx = \ln|x| + C$

This is a special case—memorize it separately!

Trap #3: Forgetting Absolute Value

WRONG: $\int \frac{1}{x} \, dx = \ln x + C$ CORRECT: $\int \frac{1}{x} \, dx = \ln|x| + C$

The domain of $\ln x$ is $x > 0$, but $\frac{1}{x}$ is defined for all $x \neq 0$. The absolute value ensures the integral works for negative $x$ too.

Trap #4: Sign Mistakes in Trig Integrals

WRONG: $\int \sin x \, dx = \cos x + C$ CORRECT: $\int \sin x \, dx = -\cos x + C$

Check method: Differentiate your answer! $\frac{d}{dx}(-\cos x) = \sin x$ ✓


Practice Problems

Level 1: Foundation (NCERT)

Problem 1

Evaluate: $\int (x^3 - 2x^2 + 5x - 7) \, dx$

Solution:

$$\begin{aligned} \int (x^3 - 2x^2 + 5x - 7) \, dx &= \frac{x^4}{4} - 2 \cdot \frac{x^3}{3} + 5 \cdot \frac{x^2}{2} - 7x + C \\ &= \frac{x^4}{4} - \frac{2x^3}{3} + \frac{5x^2}{2} - 7x + C \end{aligned}$$
Problem 2

Find: $\int (3\sin x - 4\cos x) \, dx$

Solution:

$$\begin{aligned} \int (3\sin x - 4\cos x) \, dx &= 3\int \sin x \, dx - 4\int \cos x \, dx \\ &= 3(-\cos x) - 4(\sin x) + C \\ &= -3\cos x - 4\sin x + C \end{aligned}$$
Problem 3

Evaluate: $\int \left(e^x + \frac{1}{x} + 2^x\right) dx$

Solution:

$$\begin{aligned} \int \left(e^x + \frac{1}{x} + 2^x\right) dx &= e^x + \ln|x| + \frac{2^x}{\ln 2} + C \end{aligned}$$

Level 2: JEE Main

Problem 4

JEE Main 2023 Pattern: Find $\int \frac{x^4 + 1}{x^2} \, dx$

Solution: Simplify first:

$$\frac{x^4 + 1}{x^2} = x^2 + x^{-2}$$ $$\begin{aligned} \int (x^2 + x^{-2}) \, dx &= \frac{x^3}{3} + \frac{x^{-1}}{-1} + C \\ &= \frac{x^3}{3} - \frac{1}{x} + C \end{aligned}$$
Problem 5

Problem: Evaluate $\int (\sqrt{x} + \frac{1}{\sqrt{x}})^2 dx$

Solution: Expand first:

$$(\sqrt{x} + \frac{1}{\sqrt{x}})^2 = x + 2 + \frac{1}{x}$$ $$\begin{aligned} \int \left(x + 2 + \frac{1}{x}\right) dx &= \frac{x^2}{2} + 2x + \ln|x| + C \end{aligned}$$

JEE Tip: Always expand before integrating—don’t try to integrate the squared form directly!

Problem 6

Problem: Find $\int \frac{1 - \cos 2x}{1 + \cos 2x} \, dx$

Solution: Use half-angle formulas:

  • $1 - \cos 2x = 2\sin^2 x$
  • $1 + \cos 2x = 2\cos^2 x$
$$\frac{1 - \cos 2x}{1 + \cos 2x} = \frac{2\sin^2 x}{2\cos^2 x} = \tan^2 x$$

Now use: $\tan^2 x = \sec^2 x - 1$

$$\begin{aligned} \int \tan^2 x \, dx &= \int (\sec^2 x - 1) \, dx \\ &= \tan x - x + C \end{aligned}$$

Level 3: JEE Advanced

Problem 7

JEE Advanced Pattern: If $\int f(x) \, dx = \psi(x)$, then find $\int x^5 f(x^3) \, dx$ in terms of $\psi$.

Solution: This requires substitution. Let $u = x^3$, then $du = 3x^2 \, dx$, so $x^2 \, dx = \frac{du}{3}$.

$$x^5 f(x^3) \, dx = x^3 \cdot x^2 f(x^3) \, dx = u \cdot f(u) \cdot \frac{du}{3}$$

But we need more manipulation. Note: $x^5 = x^3 \cdot x^2 = u \cdot x^2$.

$$\int x^5 f(x^3) \, dx = \int u \cdot f(u) \cdot x^2 \, dx$$

Since $u = x^3$, we have $x^2 \, dx = \frac{du}{3}$:

$$\int u \cdot f(u) \cdot \frac{du}{3} = \frac{1}{3} \int u f(u) \, du$$

This still requires integration by parts or knowing more about $f$.

Key learning: Advanced problems combine multiple techniques!

Problem 8

Problem: Prove that $\int \frac{dx}{x^2(x^4 + 1)^{3/4}} = -\left[\frac{x^4 + 1}{x^4}\right]^{1/4} + C$

Solution: Rewrite the integrand:

$$\frac{1}{x^2(x^4 + 1)^{3/4}} = \frac{x^{-2}}{(x^4 + 1)^{3/4}}$$

Divide numerator and denominator by $x^3$:

$$= \frac{x^{-2}}{x^3(x + x^{-3})^{3/4}} = \frac{1}{x^5(x + x^{-3})^{3/4}}$$

Actually, better approach: Substitute $t = \frac{x^4 + 1}{x^4}$

Then $t = 1 + x^{-4}$, so $dt = -4x^{-5} \, dx$

This is complex—requires practice with advanced substitution!

For JEE Advanced: Focus on pattern recognition and creative substitutions.

Problem 9

Conceptual Problem: Let $I = \int \sin x \, dx$ and $J = \int \cos x \, dx$. Then which of the following is true?

A) $I^2 + J^2 = C$ (constant) B) $\frac{dI}{dx} = J$ C) $\frac{dJ}{dx} = I$ D) $\frac{d^2I}{dx^2} + I = 0$

Solution: We have:

  • $I = -\cos x + C_1$
  • $J = \sin x + C_2$

Option A: $I^2 + J^2 = (-\cos x + C_1)^2 + (\sin x + C_2)^2$ ≠ constant ✗

Option B: $\frac{dI}{dx} = \frac{d}{dx}(-\cos x + C_1) = \sin x$ ✗ (Not equal to $J = \sin x + C_2$ unless $C_2 = 0$)

Option C: $\frac{dJ}{dx} = \frac{d}{dx}(\sin x + C_2) = \cos x$ ✗ (Not equal to $I = -\cos x + C_1$)

Option D: $\frac{d^2I}{dx^2} = \frac{d}{dx}(\sin x) = \cos x$, and $I = -\cos x + C_1$

So $\frac{d^2I}{dx^2} + I = \cos x + (-\cos x + C_1) = C_1$ ✗ (Not zero unless $C_1 = 0$)

Actually: The question is testing if you understand the arbitrary constant! If we take $C_1 = C_2 = 0$, then Option D is correct.

Answer: D (with understanding that we can choose constants appropriately)


Quick Revision Box

TypeIntegralResult
Power$\int x^n \, dx$$\frac{x^{n+1}}{n+1} + C$ (IPD Rule)
Special power$\int \frac{1}{x} \, dx$$\ln\|x\| + C$
Exponential$\int e^x \, dx$$e^x + C$
Exponential$\int a^x \, dx$$\frac{a^x}{\ln a} + C$
Sine$\int \sin x \, dx$$-\cos x + C$ (negative!)
Cosine$\int \cos x \, dx$$\sin x + C$ (positive!)
$\sec^2$$\int \sec^2 x \, dx$$\tan x + C$
$\csc^2$$\int \csc^2 x \, dx$$-\cot x + C$
$\frac{1}{1+x^2}$$\int \frac{1}{1+x^2} \, dx$$\tan^{-1} x + C$
$\frac{1}{\sqrt{1-x^2}}$$\int \frac{1}{\sqrt{1-x^2}} \, dx$$\sin^{-1} x + C$

Quick Check Method: Always differentiate your answer to verify!


Before studying this topic:

Related topics:

Applications in Physics:

Applications in Other Math Topics:


Teacher’s Summary

Key Takeaways
  1. Integration is Anti-Differentiation: It reverses the derivative operation. Always verify by differentiating your answer.

  2. The +C is Sacred: Every indefinite integral MUST have the constant of integration. In JEE, forgetting it costs you the entire question.

  3. Master the Essential 15: The 15 standard formulas cover 90% of JEE problems. Drill them until they’re automatic.

  4. Simplify Before You Integrate: Expand brackets, divide polynomials, use trig identities—make the integral look like a standard form.

  5. Sign Discipline: Negative signs in trig integrals (especially $\sin x \to -\cos x$) are the #1 silly mistake. Double-check!

“Integration is like solving a puzzle—you’re given the derivative (the clue) and must find the original function (the answer). Master the standard patterns, and the puzzle becomes easy.”

JEE Strategy: In the exam, 60% of integration problems can be solved with just these standard formulas. Don’t overcomplicate—check if it’s a direct formula question before attempting advanced techniques!


What’s Next?

Now that you understand indefinite integrals, you’re ready to tackle more complex problems:

  1. Next: Integration Techniques - Substitution, integration by parts, and partial fractions
  2. Then: Trigonometric Integration - Special methods for trig functions
  3. Finally: Definite Integrals - Adding limits to find exact areas

Keep practicing daily—integration mastery comes from solving 100+ problems, not just reading!