Advanced Integration Techniques: Substitution, By Parts, and Partial Fractions

Master substitution method, integration by parts using LIATE rule, and partial fractions for JEE Main and Advanced

The Hook: The Master Key Problem

Connect: Real Life → Mathematics

In Mission: Impossible - Dead Reckoning (2023), Ethan Hunt needs to unlock a series of complex locks. Some locks need a simple key (direct approach), but others need special tools and multi-step techniques.

Similarly, in integration:

  • Simple lock: $\int x^2 \, dx$ → Direct formula (basic key)
  • Complex lock: $\int x \cdot e^x \, dx$ → Needs integration by parts (special tool)
  • Tricky lock: $\int \frac{2x+3}{x^2-5x+6} \, dx$ → Needs partial fractions (multi-step technique)

JEE Reality: About 60% of integration problems need these advanced techniques. This is a must-master topic for both JEE Main and Advanced!


Technique 1: Integration by Substitution

The Core Concept

Substitution is the reverse of the chain rule. If you can spot a function and its derivative hiding in the integrand, substitution unlocks the problem.

$$\boxed{\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du \quad \text{where } u = g(x)}$$

In simple terms: Replace a complicated part with a simple variable $u$, integrate, then substitute back.

When to Use Substitution

Pattern Recognition

Look for these patterns:

  1. $f(x) \cdot f'(x)$ pattern: $\int x \cos(x^2) \, dx$ → $u = x^2$, $du = 2x \, dx$

  2. $\frac{f'(x)}{f(x)}$ pattern: $\int \frac{2x}{x^2+1} \, dx$ → Gives $\ln|f(x)| + C$

  3. $f'(x) \cdot [f(x)]^n$ pattern: $\int 2x(x^2+1)^5 \, dx$ → $u = x^2 + 1$

  4. Composite function: $\int \sin(3x) \, dx$ → $u = 3x$

Quick test: Can I find a function whose derivative appears as a factor?

Step-by-Step Process

Step 1: Identify the substitution $u = g(x)$ Step 2: Find $du = g'(x) \, dx$ Step 3: Replace all $x$ terms with $u$ terms Step 4: Integrate with respect to $u$ Step 5: Substitute back to get the answer in terms of $x$

Worked Examples

Example 1: Basic Substitution

Problem: Evaluate $\int 2x \cos(x^2) \, dx$

Solution:

Step 1: Let $u = x^2$ (inner function)

Step 2: Then $du = 2x \, dx$ (perfect! we have $2x \, dx$ in the integral)

Step 3: Rewrite:

$$\int 2x \cos(x^2) \, dx = \int \cos(u) \, du$$

Step 4: Integrate:

$$\int \cos(u) \, du = \sin(u) + C$$

Step 5: Substitute back:

$$= \sin(x^2) + C$$

Verification: $\frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot 2x$ ✓

Example 2: The $\frac{f'(x)}{f(x)}$ Pattern

Problem: Find $\int \frac{2x + 3}{x^2 + 3x + 5} \, dx$

Solution:

Notice: If $f(x) = x^2 + 3x + 5$, then $f'(x) = 2x + 3$ (numerator!)

Special rule: $\int \frac{f'(x)}{f(x)} \, dx = \ln|f(x)| + C$

$$\int \frac{2x + 3}{x^2 + 3x + 5} \, dx = \ln|x^2 + 3x + 5| + C$$

JEE Shortcut: Always check if the numerator is the derivative of the denominator!

Example 3: Adjusting Constants

Problem: Evaluate $\int \frac{x}{x^2 + 3x + 5} \, dx$

Solution:

Numerator is $x$, but derivative of denominator is $2x + 3$.

Strategy: Write $x = \frac{1}{2}(2x) = \frac{1}{2}(2x + 3 - 3)$

$$\int \frac{x}{x^2 + 3x + 5} \, dx = \int \frac{\frac{1}{2}(2x + 3) - \frac{3}{2}}{x^2 + 3x + 5} \, dx$$ $$= \frac{1}{2}\int \frac{2x + 3}{x^2 + 3x + 5} \, dx - \frac{3}{2}\int \frac{1}{x^2 + 3x + 5} \, dx$$ $$= \frac{1}{2}\ln|x^2 + 3x + 5| - \frac{3}{2} \cdot \text{(requires completing the square)}$$

Key skill: Sometimes you need to manipulate the numerator to match the derivative!

Example 4: Trigonometric Substitution Setup

Problem: Evaluate $\int \sin^3 x \cos x \, dx$

Solution:

Notice: $\frac{d}{dx}(\sin x) = \cos x$ (the derivative is present!)

Let $u = \sin x$, then $du = \cos x \, dx$

$$\int \sin^3 x \cos x \, dx = \int u^3 \, du = \frac{u^4}{4} + C = \frac{\sin^4 x}{4} + C$$

Pattern: When you see $\sin^n x \cos x$ or $\cos^n x \sin x$, use substitution!


Technique 2: Integration by Parts

The Core Concept

Integration by parts is the reverse of the product rule for differentiation.

$$\boxed{\int u \, dv = uv - \int v \, du}$$

Or in expanded form:

$$\boxed{\int u(x) \cdot v'(x) \, dx = u(x) \cdot v(x) - \int v(x) \cdot u'(x) \, dx}$$

In simple terms: To integrate a product, sacrifice one function (differentiate it) and integrate the other, then deal with what’s left over.

The LIATE Rule (Memory Trick)

LIATE: Choosing u and dv

When deciding which function to choose as $u$ (to differentiate), use the LIATE priority:

L - Logarithmic functions ($\ln x$, $\log x$) I - Inverse trigonometric ($\sin^{-1} x$, $\tan^{-1} x$, etc.) A - Algebraic ($x$, $x^2$, $x^n$) T - Trigonometric ($\sin x$, $\cos x$, $\tan x$) E - Exponential ($e^x$, $a^x$)

Choose $u$ as the function highest on the list, and $dv$ as the remaining part.

Why?

  • Logarithmic functions become simpler when differentiated: $(\ln x)' = \frac{1}{x}$
  • Exponential functions stay the same: $(e^x)' = e^x$, so better to integrate them

Example: In $\int x e^x \, dx$:

  • $x$ is Algebraic (A)
  • $e^x$ is Exponential (E)
  • Since A comes before E in LIATE, choose $u = x$, $dv = e^x \, dx$

Step-by-Step Process

Step 1: Choose $u$ and $dv$ using LIATE Step 2: Find $du$ by differentiating $u$ Step 3: Find $v$ by integrating $dv$ Step 4: Apply formula: $\int u \, dv = uv - \int v \, du$ Step 5: Evaluate the remaining integral

Interactive Demo: Visualize Integration Techniques

Explore how different integration methods transform functions interactively.

Worked Examples

Example 5: Basic By Parts

Problem: Evaluate $\int x e^x \, dx$

Solution:

Using LIATE: $x$ (Algebraic) comes before $e^x$ (Exponential)

  • Let $u = x$ → $du = dx$
  • Let $dv = e^x \, dx$ → $v = e^x$

Apply formula:

$$\int x e^x \, dx = x \cdot e^x - \int e^x \cdot 1 \, dx$$ $$= x e^x - e^x + C = e^x(x - 1) + C$$

Verification: $\frac{d}{dx}[e^x(x-1)] = e^x(x-1) + e^x \cdot 1 = xe^x$ ✓

Example 6: Logarithmic Function

Problem: Find $\int \ln x \, dx$

Solution:

This looks like a single function, but we can write it as $\int \ln x \cdot 1 \, dx$

Using LIATE: $\ln x$ (Logarithmic) comes before $1$ (constant, treat as Algebraic)

  • Let $u = \ln x$ → $du = \frac{1}{x} \, dx$
  • Let $dv = 1 \, dx$ → $v = x$

Apply formula:

$$\int \ln x \, dx = (\ln x) \cdot x - \int x \cdot \frac{1}{x} \, dx$$ $$= x\ln x - \int 1 \, dx = x\ln x - x + C$$ $$= x(\ln x - 1) + C$$

JEE Pattern: Logarithmic and inverse trig functions often need this “multiply by 1” trick!

Example 7: Repeated By Parts

Problem: Evaluate $\int x^2 e^x \, dx$

Solution:

First application:

  • $u = x^2$ → $du = 2x \, dx$
  • $dv = e^x \, dx$ → $v = e^x$
$$\int x^2 e^x \, dx = x^2 e^x - \int e^x \cdot 2x \, dx$$ $$= x^2 e^x - 2\int x e^x \, dx$$

Second application (on $\int x e^x \, dx$):

  • $u = x$ → $du = dx$
  • $dv = e^x \, dx$ → $v = e^x$
$$\int x e^x \, dx = xe^x - \int e^x \, dx = xe^x - e^x$$

Combine:

$$\int x^2 e^x \, dx = x^2 e^x - 2(xe^x - e^x) + C$$ $$= x^2 e^x - 2xe^x + 2e^x + C = e^x(x^2 - 2x + 2) + C$$

Pattern: For $\int x^n e^x \, dx$, you need to apply by parts $n$ times!

Example 8: The Circular Trick

Problem: Find $\int e^x \sin x \, dx$

Solution:

Let $I = \int e^x \sin x \, dx$

First application:

  • $u = \sin x$ → $du = \cos x \, dx$
  • $dv = e^x \, dx$ → $v = e^x$
$$I = e^x \sin x - \int e^x \cos x \, dx$$

Second application (on $\int e^x \cos x \, dx$):

  • $u = \cos x$ → $du = -\sin x \, dx$
  • $dv = e^x \, dx$ → $v = e^x$
$$\int e^x \cos x \, dx = e^x \cos x - \int e^x \cdot (-\sin x) \, dx$$ $$= e^x \cos x + \int e^x \sin x \, dx = e^x \cos x + I$$

Substitute back:

$$I = e^x \sin x - (e^x \cos x + I)$$ $$I = e^x \sin x - e^x \cos x - I$$ $$2I = e^x(\sin x - \cos x)$$ $$I = \frac{e^x(\sin x - \cos x)}{2} + C$$

Magic trick: The integral appeared on both sides! This “circular” technique works for $\int e^{ax} \sin bx \, dx$ and $\int e^{ax} \cos bx \, dx$.


Technique 3: Partial Fractions

The Core Concept

Partial fractions is used when integrating rational functions (ratio of polynomials) where the degree of the numerator is less than the degree of the denominator.

Strategy: Break a complex fraction into simpler fractions that we can integrate easily.

$$\frac{P(x)}{Q(x)} = \frac{A}{x - a} + \frac{B}{x - b} + \ldots$$

When to Use Partial Fractions

Decision Tree

Given: $\int \frac{P(x)}{Q(x)} \, dx$ (ratio of polynomials)

Step 1: Is degree of $P(x) < $ degree of $Q(x)$?

  • No: Do polynomial long division first
  • Yes: Proceed to factorization

Step 2: Can you factor $Q(x)$ into linear and/or quadratic factors?

  • Yes: Use partial fractions
  • No: May need advanced techniques (substitution, completing the square)

Step 3: Check if numerator is related to derivative of denominator

  • If $P(x) = Q'(x)$ → Direct formula: $\ln|Q(x)| + C$

Types of Partial Fractions

Type 1: Distinct Linear Factors

$$\frac{P(x)}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}$$
Example 9: Distinct Linear Factors

Problem: Evaluate $\int \frac{1}{x^2 - 5x + 6} \, dx$

Solution:

Step 1: Factor the denominator:

$$x^2 - 5x + 6 = (x-2)(x-3)$$

Step 2: Set up partial fractions:

$$\frac{1}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3}$$

Step 3: Multiply both sides by $(x-2)(x-3)$:

$$1 = A(x-3) + B(x-2)$$

Step 4: Find $A$ and $B$:

  • Method 1 (Substitution):

    • Let $x = 2$: $1 = A(-1) + 0$ → $A = -1$
    • Let $x = 3$: $1 = 0 + B(1)$ → $B = 1$
  • Method 2 (Coefficient comparison):

    • $1 = Ax - 3A + Bx - 2B = (A+B)x + (-3A-2B)$
    • Coefficient of $x$: $0 = A + B$
    • Constant term: $1 = -3A - 2B$
    • Solving: $A = -1$, $B = 1$

Step 5: Integrate:

$$\int \frac{1}{x^2 - 5x + 6} \, dx = \int \left(\frac{-1}{x-2} + \frac{1}{x-3}\right) dx$$ $$= -\ln|x-2| + \ln|x-3| + C = \ln\left|\frac{x-3}{x-2}\right| + C$$

Type 2: Repeated Linear Factors

$$\frac{P(x)}{(x-a)^n} = \frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \ldots + \frac{A_n}{(x-a)^n}$$
Example 10: Repeated Linear Factors

Problem: Find $\int \frac{2x + 1}{(x-1)^2} \, dx$

Solution:

Step 1: Set up partial fractions:

$$\frac{2x + 1}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$

Step 2: Multiply by $(x-1)^2$:

$$2x + 1 = A(x-1) + B$$

Step 3: Find constants:

  • Let $x = 1$: $3 = 0 + B$ → $B = 3$
  • Coefficient of $x$: $2 = A$ → $A = 2$

Step 4: Integrate:

$$\int \frac{2x + 1}{(x-1)^2} \, dx = \int \left(\frac{2}{x-1} + \frac{3}{(x-1)^2}\right) dx$$ $$= 2\ln|x-1| + 3 \cdot \frac{(x-1)^{-1}}{-1} + C$$ $$= 2\ln|x-1| - \frac{3}{x-1} + C$$

Type 3: Irreducible Quadratic Factors

$$\frac{P(x)}{(x^2 + bx + c)} = \frac{Ax + B}{x^2 + bx + c}$$
Example 11: Quadratic in Denominator

Problem: Evaluate $\int \frac{3x + 5}{x^2 + 2x + 5} \, dx$

Solution:

Step 1: Check if numerator is related to derivative of denominator.

  • $\frac{d}{dx}(x^2 + 2x + 5) = 2x + 2$

Step 2: Write $3x + 5 = \frac{3}{2}(2x + 2) + (5 - 3) = \frac{3}{2}(2x + 2) + 2$

Step 3: Split the integral:

$$\int \frac{3x + 5}{x^2 + 2x + 5} \, dx = \int \frac{\frac{3}{2}(2x + 2)}{x^2 + 2x + 5} \, dx + \int \frac{2}{x^2 + 2x + 5} \, dx$$ $$= \frac{3}{2}\ln|x^2 + 2x + 5| + 2\int \frac{1}{x^2 + 2x + 5} \, dx$$

Step 4: For the second integral, complete the square:

$$x^2 + 2x + 5 = (x+1)^2 + 4$$ $$\int \frac{1}{(x+1)^2 + 4} \, dx = \frac{1}{2}\tan^{-1}\left(\frac{x+1}{2}\right) + C$$

Final answer:

$$= \frac{3}{2}\ln|x^2 + 2x + 5| + 2 \cdot \frac{1}{2}\tan^{-1}\left(\frac{x+1}{2}\right) + C$$ $$= \frac{3}{2}\ln|x^2 + 2x + 5| + \tan^{-1}\left(\frac{x+1}{2}\right) + C$$

Memory Tricks & Patterns

Integration Decision Flowchart

Quick Decision Guide

1. Can you use a standard formula? → Do it! (Fastest method)

2. Is it a product of two functions?

  • Is one function’s derivative present? → Substitution
  • Not related by derivatives? → Integration by parts (use LIATE)

3. Is it a rational function (fraction)?

  • Numerator = derivative of denominator? → $\ln$ formula
  • Not quite? → Adjust numerator or use partial fractions

4. Is it a trigonometric integral? → See Trigonometric Integration

5. Still stuck? → Try algebraic manipulation, trig identities, or advanced substitutions

LIATE Mnemonic

"Lately I Ate Two Eggs"

  • Lately = Logarithmic
  • I = Inverse trig
  • Ate = Algebraic
  • Two = Trigonometric
  • Eggs = Exponential

Common Mistakes to Avoid

Trap #1: Wrong Choice of u in By Parts

WRONG: In $\int x e^x \, dx$, choosing $u = e^x$ and $dv = x \, dx$

This gives: $\int x e^x \, dx = e^x \cdot \frac{x^2}{2} - \int \frac{x^2}{2} e^x \, dx$

The second integral is more complicated than the original!

CORRECT: Use LIATE—choose $u = x$ (simpler after differentiation)

Trap #2: Forgetting to Adjust du

Problem: $\int x \sin(x^2) \, dx$

WRONG: Let $u = x^2$, $du = 2x \, dx$, then $\int \sin u \, du$ (forgot to adjust!)

CORRECT: Since $du = 2x \, dx$, we have $x \, dx = \frac{du}{2}$

$$\int x \sin(x^2) \, dx = \int \sin u \cdot \frac{du}{2} = \frac{1}{2}\int \sin u \, du = -\frac{1}{2}\cos u + C = -\frac{1}{2}\cos(x^2) + C$$
Trap #3: Partial Fractions Without Factoring

WRONG: Trying to decompose $\frac{1}{x^2 + 1}$ into $\frac{A}{x} + \frac{B}{x}$ (doesn’t factor!)

CORRECT: $x^2 + 1$ is irreducible over real numbers. Use the standard formula:

$$\int \frac{1}{x^2 + 1} \, dx = \tan^{-1} x + C$$
Trap #4: Forgetting Absolute Value in Logarithms

WRONG: $\int \frac{1}{x-2} \, dx = \ln(x-2) + C$

CORRECT: $\int \frac{1}{x-2} \, dx = \ln|x-2| + C$

The absolute value is crucial for $x < 2$!


Practice Problems

Level 1: Foundation (NCERT)

Problem 1: Basic Substitution

Evaluate: $\int \frac{1}{2x + 3} \, dx$

Solution: Let $u = 2x + 3$, then $du = 2 \, dx$, so $dx = \frac{du}{2}$

$$\int \frac{1}{2x + 3} \, dx = \int \frac{1}{u} \cdot \frac{du}{2} = \frac{1}{2}\ln|u| + C = \frac{1}{2}\ln|2x+3| + C$$
Problem 2: Basic By Parts

Find: $\int x \sin x \, dx$

Solution: Using LIATE: $u = x$ (Algebraic), $dv = \sin x \, dx$ (Trigonometric)

  • $u = x$ → $du = dx$
  • $dv = \sin x \, dx$ → $v = -\cos x$
$$\int x \sin x \, dx = x(-\cos x) - \int (-\cos x) \, dx = -x\cos x + \sin x + C$$
Problem 3: Simple Partial Fractions

Evaluate: $\int \frac{1}{x(x+1)} \, dx$

Solution:

$$\frac{1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$$

$1 = A(x+1) + Bx$

  • Let $x = 0$: $1 = A$ → $A = 1$
  • Let $x = -1$: $1 = -B$ → $B = -1$
$$\int \frac{1}{x(x+1)} \, dx = \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx = \ln|x| - \ln|x+1| + C = \ln\left|\frac{x}{x+1}\right| + C$$

Level 2: JEE Main

Problem 4: Substitution with Adjustment

JEE Main Pattern: Find $\int \frac{x^2}{(x^3 + 1)^4} \, dx$

Solution: Let $u = x^3 + 1$, then $du = 3x^2 \, dx$, so $x^2 \, dx = \frac{du}{3}$

$$\int \frac{x^2}{(x^3 + 1)^4} \, dx = \int \frac{1}{u^4} \cdot \frac{du}{3} = \frac{1}{3}\int u^{-4} \, du$$ $$= \frac{1}{3} \cdot \frac{u^{-3}}{-3} + C = -\frac{1}{9u^3} + C = -\frac{1}{9(x^3+1)^3} + C$$
Problem 5: By Parts with Polynomial

Problem: Evaluate $\int (2x + 3)e^x \, dx$

Solution: Using LIATE: $u = 2x + 3$, $dv = e^x \, dx$

  • $u = 2x + 3$ → $du = 2 \, dx$
  • $dv = e^x \, dx$ → $v = e^x$
$$\int (2x + 3)e^x \, dx = (2x+3)e^x - \int e^x \cdot 2 \, dx$$ $$= (2x+3)e^x - 2e^x + C = e^x(2x + 3 - 2) + C = e^x(2x + 1) + C$$
Problem 6: Mixed Technique

Problem: Find $\int \frac{5x - 2}{x^2 - 4} \, dx$

Solution: Factor: $x^2 - 4 = (x-2)(x+2)$

Partial fractions:

$$\frac{5x - 2}{(x-2)(x+2)} = \frac{A}{x-2} + \frac{B}{x+2}$$

$5x - 2 = A(x+2) + B(x-2)$

  • Let $x = 2$: $8 = 4A$ → $A = 2$
  • Let $x = -2$: $-12 = -4B$ → $B = 3$
$$\int \frac{5x - 2}{x^2 - 4} \, dx = \int \left(\frac{2}{x-2} + \frac{3}{x+2}\right) dx$$ $$= 2\ln|x-2| + 3\ln|x+2| + C = \ln|(x-2)^2(x+2)^3| + C$$

Level 3: JEE Advanced

Problem 7: Advanced By Parts

JEE Advanced Pattern: Evaluate $\int x^2 \ln x \, dx$

Solution: Using LIATE: $u = \ln x$ (Logarithmic), $dv = x^2 \, dx$ (Algebraic)

  • $u = \ln x$ → $du = \frac{1}{x} \, dx$
  • $dv = x^2 \, dx$ → $v = \frac{x^3}{3}$
$$\int x^2 \ln x \, dx = \ln x \cdot \frac{x^3}{3} - \int \frac{x^3}{3} \cdot \frac{1}{x} \, dx$$ $$= \frac{x^3 \ln x}{3} - \frac{1}{3}\int x^2 \, dx$$ $$= \frac{x^3 \ln x}{3} - \frac{1}{3} \cdot \frac{x^3}{3} + C = \frac{x^3 \ln x}{3} - \frac{x^3}{9} + C$$ $$= \frac{x^3}{9}(3\ln x - 1) + C$$
Problem 8: Tricky Substitution

Problem: Find $\int \frac{e^x}{e^x + 1} \, dx$

Solution: Notice: If $u = e^x + 1$, then $du = e^x \, dx$ (perfect!)

$$\int \frac{e^x}{e^x + 1} \, dx = \int \frac{1}{u} \, du = \ln|u| + C = \ln|e^x + 1| + C$$

Since $e^x + 1 > 0$ for all $x$:

$$= \ln(e^x + 1) + C$$

Alternative approach: $\frac{e^x}{e^x + 1} = 1 - \frac{1}{e^x + 1}$ also works!

Problem 9: Reduction Formula Pattern

Conceptual Problem: If $I_n = \int x^n e^x \, dx$, prove that $I_n = x^n e^x - n I_{n-1}$

Solution: Use integration by parts with $u = x^n$, $dv = e^x \, dx$:

  • $u = x^n$ → $du = nx^{n-1} \, dx$
  • $dv = e^x \, dx$ → $v = e^x$
$$I_n = \int x^n e^x \, dx = x^n e^x - \int e^x \cdot nx^{n-1} \, dx$$ $$= x^n e^x - n\int x^{n-1} e^x \, dx = x^n e^x - n I_{n-1}$$

Application: This is a reduction formula—allows you to compute $I_n$ in terms of $I_{n-1}$, eventually reaching $I_0 = e^x$.

This pattern is crucial for JEE Advanced!


Quick Revision Box

MethodWhen to UseExample
Substitution$f(g(x)) \cdot g'(x)$ pattern$\int x\cos(x^2) dx$
$\frac{f'(x)}{f(x)}$Numerator = derivative of denominator$\int \frac{2x}{x^2+1} dx = \ln(x^2+1)$
By Parts (LIATE)Product of unrelated functions$\int x e^x dx$
Partial FractionsRational function (proper)$\int \frac{1}{x^2-1} dx$
Completing SquareQuadratic in denominator$\int \frac{1}{x^2+4x+5} dx$

Before studying this topic:

Related topics:

Applications:

Algebraic Prerequisites:


Teacher’s Summary

Key Takeaways
  1. Substitution = Reverse Chain Rule: Look for a function and its derivative hiding in the integrand. Master the $\frac{f'(x)}{f(x)} = \ln|f(x)|$ pattern.

  2. LIATE is Your Best Friend: For integration by parts, always use LIATE to choose $u$. Logarithmic and inverse trig functions should almost always be $u$.

  3. Partial Fractions: Factor First: You can’t decompose what you can’t factor. Linear factors give logarithms, quadratic factors need completing the square.

  4. Practice Decision Making: The hardest part isn’t doing the integration—it’s choosing the right method. Build your pattern recognition by solving 50+ problems.

  5. Verify by Differentiation: After finding an antiderivative, always check by differentiating. This catches silly mistakes and builds confidence.

“Integration is 50% technique and 50% pattern recognition. Master the techniques here, and you’ll solve 80% of JEE integration problems.”

JEE Strategy: In the exam, spend 10-15 seconds deciding the method before starting. A wrong method can waste 3-4 minutes!


What’s Next?

You’ve mastered the core techniques! Now specialize:

  1. Next: Trigonometric Integration - Special identities and transformations for trig integrals
  2. Then: Definite Integrals - Adding limits and using properties
  3. Finally: Applications of Integrals - Finding areas, volumes, and solving real problems

Keep practicing—integration mastery is a marathon, not a sprint!