Limits, Continuity and Differentiability

Master calculus fundamentals - limits, continuity, and differentiation for JEE Mathematics.

Calculus is the mathematics of change. Limits, continuity, and differentiability form the foundation of differential calculus.

Overview

graph TD
    A[Calculus Fundamentals] --> B[Limits]
    A --> C[Continuity]
    A --> D[Differentiability]
    B --> B1[Standard Forms]
    B --> B2[L'Hopital's Rule]
    C --> C1[Types of Discontinuity]
    D --> D1[Derivatives]
    D --> D2[Applications]

Limits

Interactive Demo: Function Plotter

Explore different mathematical functions and their graphs:

Definition

$$\lim_{x \to a} f(x) = L$$

means $f(x)$ can be made arbitrarily close to $L$ by taking $x$ sufficiently close to $a$.

Left and Right Hand Limits

  • LHL: $\lim_{x \to a^-} f(x)$ (approaching from left)
  • RHL: $\lim_{x \to a^+} f(x)$ (approaching from right)

Limit exists if and only if: $\text{LHL} = \text{RHL}$

Properties of Limits

If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, then:

PropertyFormula
Sum$\lim[f(x) + g(x)] = L + M$
Product$\lim[f(x) \cdot g(x)] = L \cdot M$
Quotient$\lim\frac{f(x)}{g(x)} = \frac{L}{M}$ (M ≠ 0)
Power$\lim[f(x)]^n = L^n$

Standard Limits

Algebraic Limits

$$\boxed{\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}}$$

Trigonometric Limits

$$\boxed{\lim_{x \to 0} \frac{\sin x}{x} = 1}$$ $$\boxed{\lim_{x \to 0} \frac{\tan x}{x} = 1}$$ $$\boxed{\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}}$$

Exponential and Logarithmic Limits

$$\boxed{\lim_{x \to 0} \frac{e^x - 1}{x} = 1}$$ $$\boxed{\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a}$$ $$\boxed{\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1}$$ $$\boxed{\lim_{x \to 0} (1 + x)^{1/x} = e}$$ $$\boxed{\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e}$$
JEE Tip
For $1^\infty$ form, use: $\lim[f(x)]^{g(x)} = e^{\lim g(x)[f(x)-1]}$ when $f(x) \to 1$ and $g(x) \to \infty$

Indeterminate Forms

FormType
$\frac{0}{0}$Indeterminate
$\frac{\infty}{\infty}$Indeterminate
$0 \times \infty$Indeterminate
$\infty - \infty$Indeterminate
$0^0$Indeterminate
$1^\infty$Indeterminate
$\infty^0$Indeterminate

L’Hôpital’s Rule

For $\frac{0}{0}$ or $\frac{\infty}{\infty}$ forms:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

(if the right side exists)

Continuity

Definition

A function $f(x)$ is continuous at $x = a$ if:

  1. $f(a)$ is defined
  2. $\lim_{x \to a} f(x)$ exists
  3. $\lim_{x \to a} f(x) = f(a)$

Types of Discontinuity

graph TD
    A[Discontinuity] --> B[Removable]
    A --> C[Non-removable]
    B --> B1[Limit exists but ≠ f(a)]
    C --> C1[Jump: LHL ≠ RHL]
    C --> C2[Infinite: limit is ∞]
    C --> C3[Oscillatory: no limit]

Properties of Continuous Functions

  • Sum, difference, product of continuous functions is continuous
  • Quotient is continuous where denominator ≠ 0
  • Composition of continuous functions is continuous

Intermediate Value Theorem

If $f$ is continuous on $[a, b]$ and $k$ is between $f(a)$ and $f(b)$, then there exists $c \in (a, b)$ such that $f(c) = k$.

Differentiability

Definition

$f(x)$ is differentiable at $x = a$ if:

$$f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

exists.

Relation: Differentiability ⟹ Continuity

If $f$ is differentiable at $a$, then $f$ is continuous at $a$.

But the converse is NOT true!

Example: $f(x) = |x|$ is continuous at $x = 0$ but not differentiable.

Common Mistake
Continuity does not imply differentiability. Check for sharp corners, cusps, and vertical tangents.

Differentiation Rules

Basic Rules

FunctionDerivative
$c$ (constant)$0$
$x^n$$nx^{n-1}$
$e^x$$e^x$
$a^x$$a^x \ln a$
$\ln x$$\frac{1}{x}$
$\log_a x$$\frac{1}{x \ln a}$

Trigonometric Derivatives

FunctionDerivative
$\sin x$$\cos x$
$\cos x$$-\sin x$
$\tan x$$\sec^2 x$
$\cot x$$-\csc^2 x$
$\sec x$$\sec x \tan x$
$\csc x$$-\csc x \cot x$

Inverse Trigonometric Derivatives

FunctionDerivative
$\sin^{-1} x$$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$$\frac{-1}{\sqrt{1-x^2}}$
$\tan^{-1} x$$\frac{1}{1+x^2}$
$\cot^{-1} x$$\frac{-1}{1+x^2}$

Rules of Differentiation

Product Rule

$$\frac{d}{dx}[f(x) \cdot g(x)] = f'(x)g(x) + f(x)g'(x)$$

Quotient Rule

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

Chain Rule

$$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$$

Applications of Derivatives

Rate of Change

If $y = f(x)$, then $\frac{dy}{dx}$ represents the rate of change of $y$ with respect to $x$.

Monotonicity

  • $f'(x) > 0$ in $(a,b)$ ⟹ $f$ is increasing in $(a,b)$
  • $f'(x) < 0$ in $(a,b)$ ⟹ $f$ is decreasing in $(a,b)$

Maxima and Minima

First Derivative Test:

  • $f'(x)$ changes from + to - at $x = c$ ⟹ Local maximum
  • $f'(x)$ changes from - to + at $x = c$ ⟹ Local minimum

Second Derivative Test: At critical point $c$ where $f'(c) = 0$:

  • $f''(c) < 0$ ⟹ Local maximum
  • $f''(c) > 0$ ⟹ Local minimum

Practice Problems

  1. Evaluate: $\lim_{x \to 0} \frac{\sin 3x}{\tan 2x}$

  2. Find: $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$

  3. Check continuity and differentiability of $f(x) = |x - 1| + |x - 2|$ at $x = 1, 2$.

  4. Find maxima and minima of $f(x) = x^3 - 3x^2 - 9x + 5$.

Quick Check
Is $f(x) = x^{1/3}$ differentiable at $x = 0$? Why or why not?

Further Reading