Standard Limits & L'Hôpital's Rule

Master essential standard limits formulas including sin x/x, exponential, logarithmic limits, and L'Hôpital's Rule for JEE.

The Hook: The Mystery of sin(x)/x

Connect: Cricket Ball Trajectory

Imagine Virat Kohli hitting a six in Jawan (2023) — the ball follows a smooth arc. To find the exact direction at the highest point, we need calculus. But calculating the derivative of $\sin x$ requires knowing:

$$\lim_{x \to 0} \frac{\sin x}{x} = ?$$

This limit can’t be solved by substitution (gives $\frac{0}{0}$), but it’s so fundamental that all of trigonometric calculus depends on it.

Today, we master the standard limits — the special formulas that unlock complex limit problems in seconds!


The Core Concept

What are Standard Limits?

Standard limits are pre-proven limit formulas that appear repeatedly in calculus. Instead of deriving them each time, we memorize and apply them directly.

Think of them as the “formulas” of limits — just like $a^2 - b^2 = (a+b)(a-b)$ in algebra.

JEE Gold Mine
About 70% of JEE limit problems can be solved by recognizing and applying standard limits. Master these, and you’ll solve most problems in under 30 seconds!

Category 1: Trigonometric Limits

The Fundamental Trigonometric Limit

$$\boxed{\lim_{x \to 0} \frac{\sin x}{x} = 1}$$

Where: $x$ is in radians, not degrees!

Interactive Demo: Visualize Standard Limits

Explore how standard limit formulas behave as x approaches specific values.

Proof Sketch: Using geometry (area of sector vs triangle), we can show this rigorously.

Derived Trigonometric Limits

$$\boxed{\lim_{x \to 0} \frac{\tan x}{x} = 1}$$ $$\boxed{\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1}$$ $$\boxed{\lim_{x \to 0} \frac{\tan^{-1} x}{x} = 1}$$ $$\boxed{\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}}$$ $$\boxed{\lim_{x \to 0} \frac{1 - \cos x}{x} = 0}$$

General Forms

$$\boxed{\lim_{x \to 0} \frac{\sin(ax)}{x} = a}$$ $$\boxed{\lim_{x \to 0} \frac{\sin(ax)}{\sin(bx)} = \frac{a}{b}}$$ $$\boxed{\lim_{x \to 0} \frac{\tan(ax)}{\tan(bx)} = \frac{a}{b}}$$
Quick Derivation

For $\lim_{x \to 0} \frac{\tan x}{x}$:

$$\frac{\tan x}{x} = \frac{\sin x}{x \cos x} = \frac{\sin x}{x} \cdot \frac{1}{\cos x}$$ $$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1$$

Category 2: Exponential Limits

The Fundamental Exponential Limits

$$\boxed{\lim_{x \to 0} \frac{e^x - 1}{x} = 1}$$ $$\boxed{\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a}$$ $$\boxed{\lim_{x \to 0} \frac{a^x - b^x}{x} = \ln a - \ln b = \ln\left(\frac{a}{b}\right)}$$

The Famous $e$ Limit

$$\boxed{\lim_{x \to 0} (1 + x)^{1/x} = e}$$ $$\boxed{\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e}$$ $$\boxed{\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^x = e^a}$$

Generalization:

$$\boxed{\lim_{x \to a} \left(1 + \frac{1}{f(x)}\right)^{f(x)} = e \text{ when } f(x) \to \infty}$$
Stock Market Connection!

The limit $\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n = e^r$ describes compound interest!

If you invest money at rate $r$ compounded continuously, your money grows by factor $e^r$. This is why banks love exponentials — and why you should love this limit!


Category 3: Logarithmic Limits

Fundamental Logarithmic Limits

$$\boxed{\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1}$$ $$\boxed{\lim_{x \to 0} \frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}}$$

Generalization:

$$\boxed{\lim_{x \to 0} \frac{\ln(1 + ax)}{x} = a}$$
Connection to Exponential Limits

Notice the symmetry:

  • $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$ (exponential)
  • $\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$ (logarithm)

This is because $\ln$ and $e^x$ are inverse functions!


Category 4: Algebraic Limits

The Power Formula

$$\boxed{\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}}$$

This is actually the derivative of $x^n$ from first principles!

Special cases:

$$\lim_{x \to 0} \frac{x^n}{x} = \begin{cases} 0 & \text{if } n > 1 \\ 1 & \text{if } n = 1 \\ \infty & \text{if } n < 1 \end{cases}$$

Generalized Power Limit

$$\boxed{\lim_{x \to 0} \frac{(1 + x)^n - 1}{x} = n}$$

Category 5: The $1^\infty$ Form

Master Formula for $1^\infty$

When $\lim f(x) = 1$ and $\lim g(x) = \infty$:

$$\boxed{\lim [f(x)]^{g(x)} = e^{\lim g(x)[f(x) - 1]}}$$

Application: This solves all $1^\infty$ indeterminate forms!

Example:

$$\lim_{x \to \infty} \left(\frac{x + 3}{x + 1}\right)^{2x}$$

Here $f(x) = \frac{x+3}{x+1} \to 1$ and $g(x) = 2x \to \infty$.

$$f(x) - 1 = \frac{x+3}{x+1} - 1 = \frac{2}{x+1}$$ $$g(x)[f(x) - 1] = 2x \cdot \frac{2}{x+1} = \frac{4x}{x+1} \to 4$$ $$\lim_{x \to \infty} \left(\frac{x + 3}{x + 1}\right)^{2x} = e^4$$

L’Hôpital’s Rule (JEE Advanced)

The Rule

For indeterminate forms $\frac{0}{0}$ or $\frac{\infty}{\infty}$:

$$\boxed{\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}}$$

Conditions:

  1. The limit gives $\frac{0}{0}$ or $\frac{\infty}{\infty}$
  2. Both $f$ and $g$ are differentiable near $a$
  3. The limit of $\frac{f'(x)}{g'(x)}$ exists

When to Use L’Hôpital

Decision: L'Hôpital or Standard Limits?

Use L’Hôpital when:

  • You recognize $\frac{0}{0}$ or $\frac{\infty}{\infty}$ form
  • Factorization/rationalization seems messy
  • You’re allowed to use derivatives (JEE Advanced)

Use Standard Limits when:

  • You recognize a standard pattern
  • JEE Main problem (L’Hôpital not in syllabus)
  • Faster than differentiating

Examples Using L’Hôpital

Example 1:

$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$

Direct: $\frac{0}{0}$ form.

Apply L’Hôpital:

$$= \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \quad (\text{still } \frac{0}{0})$$

Apply again:

$$= \lim_{x \to 0} \frac{-\sin x}{6x} = \frac{-1}{6} \lim_{x \to 0} \frac{\sin x}{x} = \frac{-1}{6}$$

Example 2:

$$\lim_{x \to \infty} \frac{\ln x}{x}$$

Form: $\frac{\infty}{\infty}$

$$= \lim_{x \to \infty} \frac{1/x}{1} = \lim_{x \to \infty} \frac{1}{x} = 0$$
Common L'Hôpital Mistakes

Mistake 1: Using L’Hôpital when form is NOT $\frac{0}{0}$ or $\frac{\infty}{\infty}$

Mistake 2: Using quotient rule instead of differentiating numerator and denominator separately

Wrong: $\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$ ✗

Correct for L’Hôpital: $\frac{f'(x)}{g'(x)}$ ✓


Memory Tricks & Patterns

The “SET” Mnemonic

Standard limits fall into three categories — remember “SET”:

Sin limits: $\frac{\sin x}{x} = 1$, $\frac{1 - \cos x}{x^2} = \frac{1}{2}$

Exponential limits: $\frac{e^x - 1}{x} = 1$, $(1 + x)^{1/x} = e$

Tangent & others: $\frac{\tan x}{x} = 1$, $\frac{\ln(1+x)}{x} = 1$

The Symmetry Pattern

Notice the beautiful symmetry:

ExponentialLogarithmic
$\frac{e^x - 1}{x} = 1$$\frac{\ln(1 + x)}{x} = 1$
$\frac{a^x - 1}{x} = \ln a$$\frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}$

They’re inverses of each other!

The “Magic $e$” Family

All these equal $e$:

$$\lim_{x \to 0} (1 + x)^{1/x} = e$$ $$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$ $$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

Memory trick:Everyone Approaches 1 but gets raised to Infinity


Quick Reference Table

All Standard Limits at a Glance

LimitValue
$\lim_{x \to 0} \frac{\sin x}{x}$$1$
$\lim_{x \to 0} \frac{\tan x}{x}$$1$
$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$\frac{1}{2}$
$\lim_{x \to 0} \frac{e^x - 1}{x}$$1$
$\lim_{x \to 0} \frac{a^x - 1}{x}$$\ln a$
$\lim_{x \to 0} \frac{\ln(1 + x)}{x}$$1$
$\lim_{x \to 0} (1 + x)^{1/x}$$e$
$\lim_{x \to \infty} (1 + 1/x)^x$$e$
$\lim_{x \to a} \frac{x^n - a^n}{x - a}$$na^{n-1}$
$\lim_{x \to 0} \frac{(1+x)^n - 1}{x}$$n$

Generalized Forms

PatternFormula
$\lim_{x \to 0} \frac{\sin(ax)}{bx}$$\frac{a}{b}$
$\lim_{x \to 0} \frac{e^{ax} - 1}{bx}$$\frac{a}{b}$
$\lim_{x \to 0} \frac{\ln(1 + ax)}{bx}$$\frac{a}{b}$
$\lim [f(x)]^{g(x)}$ when $f \to 1, g \to \infty$$e^{\lim g(x)[f(x)-1]}$

Practice Problems

Level 1: Foundation (NCERT)

Problem 1

Question: Evaluate $\lim_{x \to 0} \frac{\sin 5x}{x}$

Solution:

$$\lim_{x \to 0} \frac{\sin 5x}{x} = \lim_{x \to 0} \frac{\sin 5x}{5x} \cdot 5 = 1 \cdot 5 = 5$$

Using $\lim_{x \to 0} \frac{\sin(ax)}{x} = a$ directly: Answer = $5$

Problem 2

Question: Find $\lim_{x \to 0} \frac{e^{3x} - 1}{x}$

Solution:

$$\lim_{x \to 0} \frac{e^{3x} - 1}{x} = \lim_{x \to 0} \frac{e^{3x} - 1}{3x} \cdot 3 = 1 \cdot 3 = 3$$

Using $\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$ directly: Answer = $3$

Level 2: JEE Main

Problem 3

Question: Evaluate $\lim_{x \to 0} \frac{\sin 3x}{\tan 2x}$

Solution:

$$\frac{\sin 3x}{\tan 2x} = \frac{\sin 3x}{\sin 2x} \cdot \cos 2x$$ $$= \frac{\sin 3x}{3x} \cdot \frac{2x}{\sin 2x} \cdot \frac{3x}{2x} \cdot \cos 2x$$ $$\lim_{x \to 0} \left[1 \cdot 1 \cdot \frac{3}{2} \cdot 1\right] = \frac{3}{2}$$
Problem 4

Question: Find $\lim_{x \to 0} \frac{2^x - 3^x}{x}$

Solution:

$$\lim_{x \to 0} \frac{2^x - 3^x}{x} = \lim_{x \to 0} \frac{2^x - 1}{x} - \lim_{x \to 0} \frac{3^x - 1}{x}$$ $$= \ln 2 - \ln 3 = \ln\left(\frac{2}{3}\right)$$
Problem 5

Question: Evaluate $\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$

Solution:

$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2} = \lim_{x \to 0} \frac{1 - \cos 2x}{(2x)^2} \cdot 4 = \frac{1}{2} \cdot 4 = 2$$

Using $\lim_{x \to 0} \frac{1 - \cos(ax)}{x^2} = \frac{a^2}{2}$ directly: $\frac{4}{2} = 2$

Level 3: JEE Advanced

Problem 6

Question: Find $\lim_{x \to \infty} \left(\frac{x + 5}{x + 3}\right)^{x + 2}$

Solution: This is $1^\infty$ form.

Let $f(x) = \frac{x+5}{x+3}$ and $g(x) = x + 2$.

$$f(x) - 1 = \frac{x+5}{x+3} - 1 = \frac{2}{x+3}$$ $$g(x)[f(x) - 1] = (x+2) \cdot \frac{2}{x+3} = \frac{2x + 4}{x + 3}$$ $$\lim_{x \to \infty} \frac{2x + 4}{x + 3} = 2$$ $$\lim_{x \to \infty} \left(\frac{x + 5}{x + 3}\right)^{x + 2} = e^2$$
Problem 7 (L'Hôpital)

Question: Evaluate $\lim_{x \to 0} \frac{x - \sin x}{x^3}$

Solution: Form: $\frac{0}{0}$

Apply L’Hôpital:

$$= \lim_{x \to 0} \frac{1 - \cos x}{3x^2} \quad (\text{still } \frac{0}{0})$$

Apply again:

$$= \lim_{x \to 0} \frac{\sin x}{6x} = \frac{1}{6} \cdot 1 = \frac{1}{6}$$
Problem 8 (Tricky!)

Question: Find $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$

Solution: This is $1^\infty$ form.

Let $f(x) = \frac{\sin x}{x}$ and $g(x) = \frac{1}{x^2}$.

Using Taylor series: $\sin x = x - \frac{x^3}{6} + \ldots$

$$f(x) = \frac{x - x^3/6 + \ldots}{x} = 1 - \frac{x^2}{6} + \ldots$$ $$f(x) - 1 = -\frac{x^2}{6}$$ $$g(x)[f(x) - 1] = \frac{1}{x^2} \cdot \left(-\frac{x^2}{6}\right) = -\frac{1}{6}$$ $$\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{1/x^2} = e^{-1/6}$$

Common Mistakes to Avoid

Trap #1: Forgetting to Match Forms

Wrong:

$$\lim_{x \to 0} \frac{\sin 3x}{2x} = 1$$

Correct:

$$\lim_{x \to 0} \frac{\sin 3x}{2x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{3}{2} = 1 \cdot \frac{3}{2} = \frac{3}{2}$$

You must have $\frac{\sin(ax)}{ax}$ to get 1!

Trap #2: Mixing Up Exponentials

Wrong:

$$\lim_{x \to 0} \frac{2^x - 1}{x} = 1$$

Correct:

$$\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2$$

Only $e^x$ gives 1, others give $\ln a$!

Trap #3: L'Hôpital on Non-Indeterminate Forms

Wrong:

$$\lim_{x \to 0} \frac{x + 1}{x + 2} \stackrel{?}{=} \lim_{x \to 0} \frac{1}{1} = 1$$

This gives $\frac{1}{2}$, not $\frac{0}{0}$! Don’t use L’Hôpital.

Correct: Direct substitution: $\frac{0 + 1}{0 + 2} = \frac{1}{2}$ ✓


Quick Revision Box

FormStandard Limit to Use
$\frac{\sin(ax)}{x}$Equals $a$
$\frac{e^{ax} - 1}{x}$Equals $a$
$\frac{\ln(1 + ax)}{x}$Equals $a$
$\frac{1 - \cos(ax)}{x^2}$Equals $\frac{a^2}{2}$
$(1 + x)^{1/x}$ as $x \to 0$Equals $e$
$(1 + 1/x)^x$ as $x \to \infty$Equals $e$
$f(x)^{g(x)}$ when $f \to 1, g \to \infty$$e^{\lim g(x)[f(x)-1]}$

JEE Strategy Tips

Exam Wisdom

Speed Hack: If you see $\sin$, $\tan$, $e^x$, or $\ln$ in a limit, immediately think “standard limits” — it’s probably a 30-second problem!

JEE Main: Focus on direct application of standard limits. L’Hôpital’s Rule is NOT in the syllabus.

JEE Advanced: Master both standard limits AND L’Hôpital. Advanced problems combine multiple techniques.

Common Pattern: JEE loves $1^\infty$ forms. Practice the formula $e^{\lim g(x)[f(x)-1]}$ until it’s muscle memory.

Time Saver: Make flash cards for all standard limits. Recognition speed is everything!


Teacher’s Summary

Key Takeaways
  1. Standard limits are your first weapon against difficult limit problems. Always check if a standard pattern applies before trying other methods.

  2. The three pillars: Sin/Tan limits (value 1), Exponential limits ($\ln a$), and the magic $e$ family. Master these and you’ll solve 70% of problems instantly.

  3. L’Hôpital is powerful but has conditions — only for $\frac{0}{0}$ or $\frac{\infty}{\infty}$, and differentiate separately, NOT using quotient rule.

  4. The $1^\infty$ formula is your JEE Advanced secret weapon: $\lim [f(x)]^{g(x)} = e^{\lim g(x)[f(x)-1]}$

  5. Symmetry is beautiful: Notice how $e^x$ and $\ln x$ limits mirror each other — they’re inverse functions!

“Standard limits turn impossible problems into one-line solutions!”


Within Limits, Continuity & Differentiability

Mathematical Foundations

Applications

Physics Connections