Matrices and Determinants

Master matrix operations, determinants, inverse matrices, and solving linear equations for JEE Mathematics.

Matrices and Determinants are powerful tools for solving systems of linear equations and transformations.

Overview

graph TD
    A[Matrices & Determinants] --> B[Matrices]
    A --> C[Determinants]
    B --> B1[Types]
    B --> B2[Operations]
    B --> B3[Inverse]
    C --> C1[Properties]
    C --> C2[Applications]

Matrices

A matrix is a rectangular array of numbers arranged in rows and columns.

Types of Matrices

TypeDescription
Row MatrixOnly 1 row
Column MatrixOnly 1 column
Square MatrixRows = Columns
Diagonal MatrixNon-zero only on diagonal
Scalar MatrixDiagonal elements equal
Identity MatrixDiagonal = 1, rest = 0
Null/Zero MatrixAll elements = 0
Symmetric$A = A^T$
Skew-symmetric$A = -A^T$

Matrix Operations

Addition: $(A + B)_{ij} = a_{ij} + b_{ij}$ (same order)

Scalar Multiplication: $(kA)_{ij} = k \cdot a_{ij}$

Matrix Multiplication:

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

Conditions: Columns of A = Rows of B

JEE Tip
Matrix multiplication is NOT commutative: $AB \neq BA$ in general. But it is associative: $(AB)C = A(BC)$

Properties

  • $(AB)^T = B^T A^T$
  • $(A^{-1})^T = (A^T)^{-1}$
  • Every square matrix can be written as sum of symmetric and skew-symmetric matrices: $$A = \frac{A + A^T}{2} + \frac{A - A^T}{2}$$

Determinants

For a square matrix, determinant is a scalar value.

2×2 Determinant

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

3×3 Determinant

Expand along any row or column:

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1(b_2c_3 - b_3c_2) - b_1(a_2c_3 - a_3c_2) + c_1(a_2b_3 - a_3b_2)$$

Properties of Determinants

  1. $|A^T| = |A|$
  2. Interchanging rows/columns changes sign
  3. Two identical rows/columns → $|A| = 0$
  4. $|kA| = k^n|A|$ for n×n matrix
  5. $|AB| = |A||B|$
  6. Row operation: $R_i + kR_j$ doesn’t change det
  7. Row operation: $kR_i$ multiplies det by k

Area of Triangle

Vertices $(x_1, y_1), (x_2, y_2), (x_3, y_3)$:

$$\text{Area} = \frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

Inverse of a Matrix

A matrix $A$ is invertible if $|A| \neq 0$

$$\boxed{A^{-1} = \frac{1}{|A|} \cdot adj(A)}$$

Adjoint Matrix

$adj(A)$ = transpose of cofactor matrix

Properties

  • $AA^{-1} = A^{-1}A = I$
  • $(AB)^{-1} = B^{-1}A^{-1}$
  • $(A^{-1})^{-1} = A$
  • $|A^{-1}| = \frac{1}{|A|}$
  • $|adj(A)| = |A|^{n-1}$ for n×n matrix
Common Mistake
A matrix is singular (non-invertible) if $|A| = 0$. Always check determinant before finding inverse.

Solving Linear Equations

For system $AX = B$:

Cramer’s Rule

$$x = \frac{D_x}{D}, \quad y = \frac{D_y}{D}, \quad z = \frac{D_z}{D}$$

where $D = |A|$, and $D_x, D_y, D_z$ are determinants with respective columns replaced by B.

Matrix Method

$$X = A^{-1}B$$

(if $|A| \neq 0$)

Consistency

ConditionSystem Type
$A
$A
$A

Practice Problems

  1. If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, find $A^{-1}$.

  2. Evaluate: $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$

  3. Solve using Cramer’s rule: $2x + y = 5$, $x - y = 1$

  4. For what value of k does the system have no solution? $x + y + z = 1$, $x + 2y + 3z = 2$, $x + 2y + kz = 3$

Quick Check
If $|A| = 5$, what is $|3A|$ for a 2×2 matrix?

Further Reading