Matrices and Determinants are powerful tools for solving systems of linear equations and transformations.
Overview
graph TD
A[Matrices & Determinants] --> B[Matrices]
A --> C[Determinants]
B --> B1[Types]
B --> B2[Operations]
B --> B3[Inverse]
C --> C1[Properties]
C --> C2[Applications]Matrices
A matrix is a rectangular array of numbers arranged in rows and columns.
Types of Matrices
| Type | Description |
|---|---|
| Row Matrix | Only 1 row |
| Column Matrix | Only 1 column |
| Square Matrix | Rows = Columns |
| Diagonal Matrix | Non-zero only on diagonal |
| Scalar Matrix | Diagonal elements equal |
| Identity Matrix | Diagonal = 1, rest = 0 |
| Null/Zero Matrix | All elements = 0 |
| Symmetric | $A = A^T$ |
| Skew-symmetric | $A = -A^T$ |
Matrix Operations
Addition: $(A + B)_{ij} = a_{ij} + b_{ij}$ (same order)
Scalar Multiplication: $(kA)_{ij} = k \cdot a_{ij}$
Matrix Multiplication:
$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$$Conditions: Columns of A = Rows of B
Properties
- $(AB)^T = B^T A^T$
- $(A^{-1})^T = (A^T)^{-1}$
- Every square matrix can be written as sum of symmetric and skew-symmetric matrices: $$A = \frac{A + A^T}{2} + \frac{A - A^T}{2}$$
Determinants
For a square matrix, determinant is a scalar value.
2×2 Determinant
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$3×3 Determinant
Expand along any row or column:
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1(b_2c_3 - b_3c_2) - b_1(a_2c_3 - a_3c_2) + c_1(a_2b_3 - a_3b_2)$$Properties of Determinants
- $|A^T| = |A|$
- Interchanging rows/columns changes sign
- Two identical rows/columns → $|A| = 0$
- $|kA| = k^n|A|$ for n×n matrix
- $|AB| = |A||B|$
- Row operation: $R_i + kR_j$ doesn’t change det
- Row operation: $kR_i$ multiplies det by k
Area of Triangle
Vertices $(x_1, y_1), (x_2, y_2), (x_3, y_3)$:
$$\text{Area} = \frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$Inverse of a Matrix
A matrix $A$ is invertible if $|A| \neq 0$
$$\boxed{A^{-1} = \frac{1}{|A|} \cdot adj(A)}$$Adjoint Matrix
$adj(A)$ = transpose of cofactor matrix
Properties
- $AA^{-1} = A^{-1}A = I$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^{-1})^{-1} = A$
- $|A^{-1}| = \frac{1}{|A|}$
- $|adj(A)| = |A|^{n-1}$ for n×n matrix
Solving Linear Equations
For system $AX = B$:
Cramer’s Rule
$$x = \frac{D_x}{D}, \quad y = \frac{D_y}{D}, \quad z = \frac{D_z}{D}$$where $D = |A|$, and $D_x, D_y, D_z$ are determinants with respective columns replaced by B.
Matrix Method
$$X = A^{-1}B$$(if $|A| \neq 0$)
Consistency
| Condition | System Type |
|---|---|
| $ | A |
| $ | A |
| $ | A |
Practice Problems
If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, find $A^{-1}$.
Evaluate: $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$
Solve using Cramer’s rule: $2x + y = 5$, $x - y = 1$
For what value of k does the system have no solution? $x + y + z = 1$, $x + 2y + 3z = 2$, $x + 2y + kz = 3$