Adjoint and Inverse of Matrices

Master adjoint matrix, inverse matrix formula, properties of invertible matrices, and methods to find matrix inverse for JEE Main & Advanced.

The Hook: The Undo Button of Mathematics

Connect: Google's Search Algorithm Reversal

Ever wondered how Google can reverse-engineer where a webpage should rank? They use matrix inverses!

The PageRank algorithm creates a giant matrix representing how web pages link to each other. To find rankings, Google needs to solve a massive linear system — which requires finding the inverse of this matrix.

Real-world applications:

  • Computer graphics: Undo transformations (rotate back, scale back)
  • Cryptography: Decrypt messages (encryption matrix → inverse for decryption)
  • Economics: Input-output analysis (production → resource requirements)
  • Engineering: Solve circuit equations, structural analysis
  • Machine learning: Parameter optimization, neural network training

The magic: If $A$ represents a transformation, $A^{-1}$ undoes it:

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$

Why this matters for JEE: Inverse matrices appear in 3-4 questions in JEE Main and are essential for solving linear systems, eigenvalue problems, and transformation geometry in JEE Advanced.


Prerequisites

Before diving into adjoint and inverse, you should be comfortable with:


Singular vs Non-Singular Matrices

Definitions

A square matrix $A$ is called:

Non-singular (Invertible): if $|A| \neq 0$

  • The matrix has an inverse
  • Represents a reversible transformation
  • System $AX = B$ has a unique solution

Singular (Non-invertible): if $|A| = 0$

  • The matrix does NOT have an inverse
  • Represents a dimension-collapsing transformation
  • System $AX = B$ may have no solution or infinitely many solutions
$$\boxed{A^{-1} \text{ exists} \iff |A| \neq 0}$$

Examples

Example 1: Non-singular
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$ $$|A| = 1(4) - 2(3) = 4 - 6 = -2 \neq 0$$

Non-singular → Inverse exists ✓

Example 2: Singular
$$B = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$$ $$|B| = 2(6) - 4(3) = 12 - 12 = 0$$

Singular → Inverse does NOT exist ✗

Notice Row 2 = $\frac{3}{2}$ × Row 1 (proportional rows)

Quick Check for Singularity

Before finding inverse, always check if $|A| = 0$:

  1. Zero row/column → Singular
  2. Identical rows/columns → Singular
  3. Proportional rows/columns → Singular
  4. Determinant = 0 → Singular

Don’t waste time trying to find inverse of a singular matrix!


Adjoint of a Matrix (Adjugate)

Definition

The adjoint (or adjugate) of a square matrix $A$, denoted $\text{adj}(A)$, is the transpose of the cofactor matrix.

$$\boxed{\text{adj}(A) = [C_{ij}]^T}$$

Steps to find adjoint:

  1. Find all cofactors $C_{ij}$ of matrix $A$
  2. Form the cofactor matrix $[C_{ij}]$
  3. Take transpose: $\text{adj}(A) = [C_{ij}]^T$

Example: 2×2 Matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Step 1: Find cofactors

$$C_{11} = (+1) \cdot d = d$$ $$C_{12} = (-1) \cdot c = -c$$ $$C_{21} = (-1) \cdot b = -b$$ $$C_{22} = (+1) \cdot a = a$$

Step 2: Cofactor matrix

$$[C_{ij}] = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

Step 3: Transpose

$$\text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

For 2×2 matrices, there’s a shortcut:

$$\boxed{\text{adj}\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}}$$

Pattern: Swap diagonal elements, negate off-diagonal elements.

Example: 3×3 Matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6 \end{bmatrix}$$

Step 1: Find all 9 cofactors

$$C_{11} = (+1) \begin{vmatrix} 4 & 5 \\ 0 & 6 \end{vmatrix} = 24$$ $$C_{12} = (-1) \begin{vmatrix} 0 & 5 \\ 1 & 6 \end{vmatrix} = -(0-5) = 5$$ $$C_{13} = (+1) \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix} = -4$$ $$C_{21} = (-1) \begin{vmatrix} 2 & 3 \\ 0 & 6 \end{vmatrix} = -12$$ $$C_{22} = (+1) \begin{vmatrix} 1 & 3 \\ 1 & 6 \end{vmatrix} = 3$$ $$C_{23} = (-1) \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = 2$$ $$C_{31} = (+1) \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -2$$ $$C_{32} = (-1) \begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = -5$$ $$C_{33} = (+1) \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} = 4$$

Step 2: Cofactor matrix

$$[C_{ij}] = \begin{bmatrix} 24 & 5 & -4 \\ -12 & 3 & 2 \\ -2 & -5 & 4 \end{bmatrix}$$

Step 3: Transpose

$$\text{adj}(A) = \begin{bmatrix} 24 & -12 & -2 \\ 5 & 3 & -5 \\ -4 & 2 & 4 \end{bmatrix}$$

Properties of Adjoint

Property 1: Product with Original Matrix

$$\boxed{A \cdot \text{adj}(A) = \text{adj}(A) \cdot A = |A| \cdot I}$$

This is the KEY property connecting adjoint and inverse!

Property 2: Determinant of Adjoint

For an $n \times n$ matrix:

$$\boxed{|\text{adj}(A)| = |A|^{n-1}}$$

Examples:

  • For $2 \times 2$: $|\text{adj}(A)| = |A|^{2-1} = |A|$
  • For $3 \times 3$: $|\text{adj}(A)| = |A|^{3-1} = |A|^2$

Property 3: Adjoint of Transpose

$$\text{adj}(A^T) = [\text{adj}(A)]^T$$

Property 4: Adjoint of Product

$$\text{adj}(AB) = \text{adj}(B) \cdot \text{adj}(A)$$

Note: Order reverses (just like $(AB)^T = B^T A^T$)!

Property 5: Adjoint of Adjoint

For non-singular $A$ of order $n$:

$$\text{adj}(\text{adj}(A)) = |A|^{n-2} \cdot A$$

Property 6: Adjoint of Scalar Multiple

$$\text{adj}(kA) = k^{n-1} \text{adj}(A)$$

where $n$ is the order of matrix $A$.

Memory Trick: The Magic Product

Most important property:

$$A \cdot \text{adj}(A) = |A| \cdot I$$

Why it’s magic: This directly gives us the inverse formula!

Divide both sides by $|A|$:

$$A \cdot \frac{\text{adj}(A)}{|A|} = I$$

Therefore: $A^{-1} = \frac{\text{adj}(A)}{|A|}$


Inverse of a Matrix

Definition

The inverse of a square matrix $A$, denoted $A^{-1}$, is the unique matrix such that:

$$\boxed{A \cdot A^{-1} = A^{-1} \cdot A = I}$$

Existence condition: $A^{-1}$ exists if and only if $|A| \neq 0$

Inverse Formula Using Adjoint

$$\boxed{A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A)}$$

This is THE formula for JEE!

Steps to Find Inverse

Step 1: Check if $|A| \neq 0$ (if zero, inverse doesn’t exist)

Step 2: Find all cofactors $C_{ij}$

Step 3: Form adjoint: $\text{adj}(A) = [C_{ij}]^T$

Step 4: Apply formula: $A^{-1} = \frac{1}{|A|} \text{adj}(A)$

Example 1: 2×2 Inverse

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Step 1: $|A| = 4 - 6 = -2 \neq 0$ ✓

Step 2:

$$\text{adj}(A) = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$

Step 3:

$$A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}$$

Verify:

$$A \cdot A^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Quick Formula for 2×2 Inverse

For $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$:

$$\boxed{A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}}$$

Pattern:

  1. Find determinant: $ad - bc$
  2. Swap diagonal: $a \leftrightarrow d$
  3. Negate off-diagonal: $b \to -b$, $c \to -c$
  4. Divide by determinant

Example 2: 3×3 Inverse

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$$

Step 1: Calculate $|A|$

$$|A| = 1(0-24) - 2(0-20) + 3(0-5) = -24 + 40 - 15 = 1$$

Since $|A| = 1 \neq 0$, inverse exists ✓

Step 2: Find all 9 cofactors

$$C_{11} = \begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix} = -24$$ $$C_{12} = -\begin{vmatrix} 0 & 4 \\ 5 & 0 \end{vmatrix} = 0 - (-20) = 20$$ $$C_{13} = \begin{vmatrix} 0 & 1 \\ 5 & 6 \end{vmatrix} = -5$$ $$C_{21} = -\begin{vmatrix} 2 & 3 \\ 6 & 0 \end{vmatrix} = -(-18) = 18$$ $$C_{22} = \begin{vmatrix} 1 & 3 \\ 5 & 0 \end{vmatrix} = -15$$ $$C_{23} = -\begin{vmatrix} 1 & 2 \\ 5 & 6 \end{vmatrix} = -(6-10) = 4$$ $$C_{31} = \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} = 5$$ $$C_{32} = -\begin{vmatrix} 1 & 3 \\ 0 & 4 \end{vmatrix} = -4$$ $$C_{33} = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1$$

Step 3: Form adjoint (transpose of cofactor matrix)

$$\text{adj}(A) = \begin{bmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{bmatrix}$$

Step 4: Apply formula

$$A^{-1} = \frac{1}{1} \begin{bmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{bmatrix} = \begin{bmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{bmatrix}$$

Properties of Inverse Matrices

Property 1: Uniqueness

If $A^{-1}$ exists, it is unique.

Property 2: Inverse of Inverse

$$\boxed{(A^{-1})^{-1} = A}$$

Inverting twice returns the original matrix.

Property 3: Inverse of Product

$$\boxed{(AB)^{-1} = B^{-1} A^{-1}}$$

Order reverses! (Just like transpose and adjoint)

Extended: $(ABC)^{-1} = C^{-1} B^{-1} A^{-1}$

Property 4: Inverse of Transpose

$$\boxed{(A^T)^{-1} = (A^{-1})^T}$$

Property 5: Determinant of Inverse

$$\boxed{|A^{-1}| = \frac{1}{|A|}}$$

Proof: $A \cdot A^{-1} = I$ → $|A| \cdot |A^{-1}| = |I| = 1$

Property 6: Inverse of Scalar Multiple

$$\boxed{(kA)^{-1} = \frac{1}{k} A^{-1}}$$

Property 7: Identity Matrix

$$\boxed{I^{-1} = I}$$

The identity is its own inverse.

Property 8: Symmetric Matrix

If $A$ is symmetric, then $A^{-1}$ is also symmetric:

$$A = A^T \implies A^{-1} = (A^{-1})^T$$
Memory Trick: Reversal Rules

Three operations that REVERSE order:

  1. Transpose: $(AB)^T = B^T A^T$
  2. Inverse: $(AB)^{-1} = B^{-1} A^{-1}$
  3. Adjoint: $\text{adj}(AB) = \text{adj}(B) \cdot \text{adj}(A)$

Mnemonic: “TIA Reverses” (Transpose, Inverse, Adjoint)

Think: Taking off shoes and socks — reverse the order!


Special Matrices and Their Inverses

1. Diagonal Matrix

$$D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \implies D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & 0 \\ 0 & \frac{1}{d_2} & 0 \\ 0 & 0 & \frac{1}{d_3} \end{bmatrix}$$

Rule: Reciprocal of each diagonal element (if all non-zero).

2. Orthogonal Matrix

A matrix $A$ is orthogonal if:

$$\boxed{A^T A = AA^T = I}$$

For orthogonal matrices:

$$\boxed{A^{-1} = A^T}$$

Example: Rotation matrices are orthogonal.

3. Involutory Matrix

A matrix $A$ is involutory if:

$$A^2 = I$$

For involutory matrices:

$$\boxed{A^{-1} = A}$$

The matrix is its own inverse!

Example: $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$


Elementary Row Operations Method

An alternative method to find inverse is using elementary row operations (Gauss-Jordan elimination):

Method

Write the augmented matrix $[A | I]$ and perform row operations to convert it to $[I | A^{-1}]$.

Example

Find inverse of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Step 1: Form augmented matrix

$$\left[\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{array}\right]$$

Step 2: $R_2 \to R_2 - 3R_1$

$$\left[\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{array}\right]$$

Step 3: $R_2 \to -\frac{1}{2}R_2$

$$\left[\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \end{array}\right]$$

Step 4: $R_1 \to R_1 - 2R_2$

$$\left[\begin{array}{cc|cc} 1 & 0 & -2 & 1 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \end{array}\right]$$

Result:

$$A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$
When to Use Each Method?

Adjoint method:

  • ✓ Good for theoretical problems
  • ✓ When determinant is simple
  • ✓ JEE Advanced symbolic questions
  • ✗ Lots of calculations for $3 \times 3$

Row operations method:

  • ✓ Faster for numerical $3 \times 3$ and larger
  • ✓ Systematic, less prone to errors
  • ✓ Good for computational problems
  • ✗ Not useful for symbolic matrices

For JEE: Master both! Use adjoint for $2 \times 2$ and theoretical, use row operations for numerical $3 \times 3$.


Common Mistakes to Avoid

Trap #1: Singular Matrix Inverse

Wrong: Finding inverse when $|A| = 0$

Right: Always check $|A| \neq 0$ first!

If $|A| = 0$, the matrix is singular and has no inverse.

Don’t waste time calculating adjoint if determinant is zero!

Trap #2: Forgetting to Transpose Cofactor Matrix

Wrong: $\text{adj}(A) = [C_{ij}]$ (cofactor matrix)

Right: $\text{adj}(A) = [C_{ij}]^T$ (transpose of cofactor matrix)

Always transpose the cofactor matrix to get adjoint!

Trap #3: Product Inverse Order

Wrong: $(AB)^{-1} = A^{-1} B^{-1}$

Right: $(AB)^{-1} = B^{-1} A^{-1}$ (order reverses!)

Think: Undo operations in reverse order.

Trap #4: Dividing Each Element

Wrong: $A^{-1} = \frac{1}{A}$ (dividing each element by 1)

Right: $A^{-1} = \frac{1}{|A|} \text{adj}(A)$ (multiply adjoint by $\frac{1}{|A|}$)

Matrix inverse is NOT element-wise reciprocal!

Trap #5: Inverse of Sum

Wrong: $(A + B)^{-1} = A^{-1} + B^{-1}$

Right: There is NO simple formula for $(A + B)^{-1}$!

This is a common trick question in JEE. Don’t fall for it!


Practice Problems

Level 1: Foundation (NCERT)

Problem 1.1

Find the adjoint of $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$

Solution:

For $2 \times 2$: Swap diagonal, negate off-diagonal

$$\text{adj}(A) = \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$$

Answer: $\begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$

Problem 1.2

Find the inverse of $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$

Solution:

$$|A| = 7 - 6 = 1$$ $$\text{adj}(A) = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}$$ $$A^{-1} = \frac{1}{1} \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}$$

Answer: $\begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}$

Problem 1.3

Verify that $A \cdot \text{adj}(A) = |A| \cdot I$ for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Solution:

$$|A| = -2$$ $$\text{adj}(A) = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$ $$A \cdot \text{adj}(A) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$$ $$|A| \cdot I = -2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$$

Verified!

Level 2: JEE Main

Problem 2.1

If $A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$, find $(A^{-1})^T$.

Solution:

$$|A| = 14 - 15 = -1$$ $$A^{-1} = \frac{1}{-1} \begin{bmatrix} 7 & -3 \\ -5 & 2 \end{bmatrix} = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}$$ $$(A^{-1})^T = \begin{bmatrix} -7 & 5 \\ 3 & -2 \end{bmatrix}$$

Answer: $\begin{bmatrix} -7 & 5 \\ 3 & -2 \end{bmatrix}$

Problem 2.2

If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, find $A^{-1}$.

Solution:

Diagonal matrix! Inverse = reciprocal of diagonal elements

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$$

Answer: $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.2 \end{bmatrix}$

Problem 2.3

If $|A| = 5$ for a $3 \times 3$ matrix, find $|\text{adj}(A)|$.

Solution:

For $n \times n$ matrix: $|\text{adj}(A)| = |A|^{n-1}$

For $3 \times 3$: $|\text{adj}(A)| = |A|^{3-1} = 5^2 = 25$

Answer: 25

Level 3: JEE Advanced

Problem 3.1

If $A$ and $B$ are invertible matrices, prove that $(AB)^{-1} = B^{-1} A^{-1}$.

Solution:

We need to show: $(AB) \cdot (B^{-1} A^{-1}) = I$

$$(AB)(B^{-1} A^{-1}) = A(BB^{-1})A^{-1}$$ $$= A \cdot I \cdot A^{-1}$$ $$= AA^{-1} = I$$

Similarly: $(B^{-1} A^{-1})(AB) = I$

Therefore: $(AB)^{-1} = B^{-1} A^{-1}$ Proved!

Problem 3.2

If $A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$, show that $A^{-1} = A^T$ (orthogonal matrix).

Solution:

$$A^T = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$ $$A \cdot A^T = \begin{bmatrix} \cos^2\theta + \sin^2\theta & 0 \\ 0 & \sin^2\theta + \cos^2\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Since $AA^T = I$, we have $A^{-1} = A^T$ ✓

Proved! (Rotation matrices are orthogonal)

Problem 3.3

If $A^2 - 3A + 2I = O$, express $A^{-1}$ in terms of $A$ and $I$.

Solution:

$$A^2 - 3A + 2I = O$$ $$A^2 - 3A = -2I$$ $$A(A - 3I) = -2I$$ $$A \cdot \frac{A - 3I}{-2} = I$$

Therefore:

$$A^{-1} = \frac{3I - A}{2}$$

Answer: $A^{-1} = \frac{1}{2}(3I - A)$


Quick Revision Box

ConceptFormula/Property
Non-singular$\|A\| \neq 0$ (inverse exists)
Singular$\|A\| = 0$ (no inverse)
Adjoint$\text{adj}(A) = [C_{ij}]^T$
Inverse formula$A^{-1} = \frac{1}{\|A\|} \text{adj}(A)$
$2 \times 2$ adjointSwap diagonal, negate off-diagonal
$A \cdot \text{adj}(A)$$\|A\| \cdot I$
$\|\text{adj}(A)\|$$\|A\|^{n-1}$ for $n \times n$
$(AB)^{-1}$$B^{-1} A^{-1}$ (order reverses!)
$(A^T)^{-1}$$(A^{-1})^T$
$\|A^{-1}\|$$\frac{1}{\|A\|}$
Diagonal inverseReciprocal of diagonal elements
Orthogonal$A^{-1} = A^T$

Within Matrices & Determinants Chapter

Math Connections

Real-World Applications

  • Cryptography — RSA encryption, Hill cipher
  • Computer graphics — Inverse transformations
  • Economics — Leontief input-output model
  • Engineering — Circuit analysis, structural mechanics
  • Machine learning — Parameter optimization

Teacher’s Summary

Key Takeaways
  1. Inverse exists ⟺ $|A| \neq 0$ (non-singular matrix)
  2. Adjoint = Transpose of cofactor matrix: $\text{adj}(A) = [C_{ij}]^T$
  3. Inverse formula: $A^{-1} = \frac{1}{|A|} \text{adj}(A)$ (THE formula!)
  4. Magic property: $A \cdot \text{adj}(A) = |A| \cdot I$
  5. 2×2 shortcut: Swap diagonal, negate off-diagonal, divide by determinant
  6. Order reversal: $(AB)^{-1} = B^{-1} A^{-1}$ (like transpose!)
  7. Diagonal matrix: Inverse = reciprocal of each diagonal element
  8. Orthogonal matrix: $A^{-1} = A^T$ (rotation matrices!)
  9. Check first: Always verify $|A| \neq 0$ before finding inverse

“First check the determinant — don’t waste time on singular matrices!”

Exam Strategy:

  • $2 \times 2$: Use shortcut formula (10 seconds)
  • $3 \times 3$ numerical: Row operations OR adjoint method
  • $3 \times 3$ symbolic: Adjoint method (shows all work)
  • Special matrices: Use properties (diagonal, orthogonal, etc.)

Next: Linear Equations →