Determinants: Evaluation and Calculation

Master determinant calculation for 2×2 and 3×3 matrices, Sarrus rule, expansion methods, and determinant properties for JEE Main & Advanced.

The Hook: The Detective Number of Matrices

Connect: Why Transformers Can't Transform

In the movie Transformers, when Optimus Prime transforms, his structure changes dramatically but his “essence” remains the same. Mathematically, this is captured by determinants!

A determinant is like a fingerprint of a matrix:

  • If $|A| = 0$: The transformation collapses dimensions (singular/degenerate)
  • If $|A| \neq 0$: The transformation is reversible (non-singular)
  • $|A|$ tells you how much area/volume gets scaled by the transformation

Real applications:

  • Computer graphics: Does this transformation flip the object? Check if $|A| < 0$
  • Physics: Is this system solvable? Check if determinant $\neq 0$
  • Economics: Is the input-output model consistent? Determinant must be non-zero
  • Cryptography: Is the encryption key valid? Requires $|A| \neq 0$ and $\gcd(|A|, 26) = 1$

Why this matters for JEE: Determinants appear in 5-6 questions in JEE Main, and understanding properties is crucial for solving complex 3×3 determinants quickly in JEE Advanced. Speed matters!


Prerequisites

Before diving into determinants, you should be comfortable with:


What is a Determinant?

Definition

A determinant is a scalar value associated with every square matrix.

For a matrix $A$, the determinant is denoted by:

$$|A| \quad \text{or} \quad \det(A) \quad \text{or} \quad \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Key points:

  • Only square matrices have determinants
  • Result is a single number (not a matrix!)
  • Tells if matrix is invertible: $|A| \neq 0$ ↔ $A^{-1}$ exists
Notation Alert

Matrix: Square brackets $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Determinant: Vertical bars $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$

Don’t confuse the notation!


Determinant of a 2×2 Matrix

Formula

For a $2 \times 2$ matrix:

$$\boxed{\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc}$$

Memory trick: “Down-right minus up-right”

  • Main diagonal product ($ad$) MINUS
  • Off-diagonal product ($bc$)

Visual Representation

$$\begin{vmatrix} \color{blue}{a} & b \\ c & \color{blue}{d} \end{vmatrix} - \begin{vmatrix} a & \color{red}{b} \\ \color{red}{c} & d \end{vmatrix}$$

Blue diagonal ($\color{blue}{ad}$) minus red diagonal ($\color{red}{bc}$)

Examples

Example 1
$$\begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} = (3)(4) - (2)(1) = 12 - 2 = 10$$
Example 2
$$\begin{vmatrix} 5 & -3 \\ 2 & 7 \end{vmatrix} = (5)(7) - (-3)(2) = 35 + 6 = 41$$
Example 3
$$\begin{vmatrix} 2 & 4 \\ 3 & 6 \end{vmatrix} = (2)(6) - (4)(3) = 12 - 12 = 0$$

This matrix is singular (non-invertible) since $|A| = 0$!


Determinant of a 3×3 Matrix

Method 1: Sarrus Rule (Diagonal Method)

Sarrus Rule is a quick method for $3 \times 3$ determinants:

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Step 1: Rewrite first two columns on the right

$$\begin{array}{|ccc|cc} a_1 & b_1 & c_1 & a_1 & b_1 \\ a_2 & b_2 & c_2 & a_2 & b_2 \\ a_3 & b_3 & c_3 & a_3 & b_3 \end{array}$$

Step 2: Sum of main diagonal products (↘):

$$\color{blue}{a_1 b_2 c_3 + b_1 c_2 a_3 + c_1 a_2 b_3}$$

Step 3: Sum of anti-diagonal products (↙):

$$\color{red}{c_1 b_2 a_3 + a_1 c_2 b_3 + b_1 a_2 c_3}$$

Final: Blue sum minus red sum

$$\boxed{|A| = \color{blue}{(a_1 b_2 c_3 + b_1 c_2 a_3 + c_1 a_2 b_3)} - \color{red}{(c_1 b_2 a_3 + a_1 c_2 b_3 + b_1 a_2 c_3)}}$$
Memory Trick: The Three Diagonals

Positive terms (↘ ↘ ↘):

  • Start from column 1, 2, 3 in row 1
  • Go diagonally down-right (wrap around)

Negative terms (↙ ↙ ↙):

  • Start from column 3, 2, 1 in row 1
  • Go diagonally down-left (wrap around)

Mnemonic: “Right is Plus, Left is Minus”

Example using Sarrus Rule

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$

Positive products:

  • $1 \cdot 5 \cdot 9 = 45$
  • $2 \cdot 6 \cdot 7 = 84$
  • $3 \cdot 4 \cdot 8 = 96$

Sum = $45 + 84 + 96 = 225$

Negative products:

  • $3 \cdot 5 \cdot 7 = 105$
  • $1 \cdot 6 \cdot 8 = 48$
  • $2 \cdot 4 \cdot 9 = 72$

Sum = $105 + 48 + 72 = 225$

Determinant: $225 - 225 = 0$

The matrix is singular!


Method 2: Expansion by First Row

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Expand along Row 1 with alternating signs $(+, -, +)$:

$$\boxed{= a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}}$$

In expanded form:

$$= a_1(b_2 c_3 - b_3 c_2) - b_1(a_2 c_3 - a_3 c_2) + c_1(a_2 b_3 - a_3 b_2)$$

Sign pattern for expansion:

$$\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

This is the checkerboard pattern starting with $+$ at position $(1,1)$.

Example using Row Expansion

$$\begin{vmatrix} 2 & 3 & 1 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$

Expand along Row 1:

$$= 2\begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 3\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 1\begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}$$ $$= 2(45 - 48) - 3(36 - 42) + 1(32 - 35)$$ $$= 2(-3) - 3(-6) + 1(-3)$$ $$= -6 + 18 - 3 = 9$$

Answer: $|A| = 9$

Which Method to Use?

Sarrus Rule:

  • ✓ Fast for numerical $3 \times 3$ matrices
  • ✓ Good for quick calculations
  • ✗ Only works for $3 \times 3$ (not generalizable)
  • ✗ Easy to make sign errors

Row/Column Expansion:

  • ✓ Works for any size square matrix
  • ✓ Systematic with clear sign pattern
  • ✓ Useful when row/column has zeros
  • ✗ Slower for purely numerical matrices

JEE Strategy: Use Sarrus for quick $3 \times 3$. Use expansion when:

  • Matrix has many zeros
  • Matrix has symbolic entries
  • Need to prove properties

Expansion Along Any Row or Column

You can expand along any row or column (not just first row!)

General Formula

For element $a_{ij}$, the cofactor sign is:

$$\boxed{(-1)^{i+j}}$$

Sign pattern:

$$\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

Expansion Along Row $i$

$$|A| = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

where $M_{ij}$ is the minor (determinant after removing row $i$ and column $j$).

Expansion Along Column $j$

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$
Smart Strategy: Choose the Best Row/Column

Always expand along the row/column with the most zeros!

This minimizes calculations.

Example:

$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 0 & 5 \\ 4 & 0 & 6 \end{vmatrix}$$

Expand along Row 2 (has two zeros):

$$= -0 \cdot M_{21} + 0 \cdot M_{22} - 5 \cdot M_{23}$$ $$= -5 \begin{vmatrix} 1 & 2 \\ 4 & 0 \end{vmatrix} = -5(0 - 8) = -5(-8) = 40$$

Only one $2 \times 2$ determinant needed!


Special Determinants

1. Diagonal Matrix

$$\begin{vmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{vmatrix} = abc$$

Rule: Product of diagonal elements.

2. Triangular Matrix (Upper or Lower)

$$\begin{vmatrix} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{vmatrix} = abc$$

Rule: Product of diagonal elements (regardless of other entries).

3. Identity Matrix

$$|I_n| = 1$$

4. Zero Matrix

$$|O| = 0$$

5. Matrix with Zero Row or Column

If any row or column is entirely zeros:

$$|A| = 0$$

6. Matrix with Two Identical Rows/Columns

If two rows (or columns) are identical:

$$|A| = 0$$

Example:

$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} = 0$$

(Row 1 = Row 2)

7. Matrix with Proportional Rows/Columns

If one row is a scalar multiple of another:

$$|A| = 0$$

Example:

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0$$

(Row 2 = 2 × Row 1)

JEE Time-Saver

Before calculating a complex determinant, check:

  1. Is any row/column all zeros? → $|A| = 0$
  2. Are two rows/columns identical? → $|A| = 0$
  3. Is one row a multiple of another? → $|A| = 0$
  4. Is it triangular/diagonal? → Product of diagonal

These checks can save 2-3 minutes on JEE Advanced!


Common Mistakes to Avoid

Trap #1: Sarrus Rule for Larger Matrices

Wrong: Using Sarrus rule for $4 \times 4$ or larger matrices

Right: Sarrus rule ONLY works for $3 \times 3$ matrices!

For $n \geq 4$, you must use cofactor expansion or properties.

Trap #2: Sign Errors in Expansion

Wrong: Forgetting the alternating signs in expansion

Right: Always use the checkerboard pattern:

$$\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

Position $(i,j)$ has sign $(-1)^{i+j}$

Trap #3: Determinant of Non-Square Matrix

Wrong: Finding determinant of a $2 \times 3$ matrix

Right: Determinants are only defined for square matrices!

$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ has no determinant.

Trap #4: Determinant vs Matrix

Wrong:

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \begin{bmatrix} -2 & 2 \\ 3 & -1 \end{bmatrix}$$

Right:

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2 \text{ (a scalar, not a matrix!)}$$

Determinant is always a single number, not a matrix!

Trap #5: Proportional Rows

Wrong: Not recognizing proportional rows before calculating

Example:

$$\begin{vmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 5 & 7 & 9 \end{vmatrix}$$

Row 1 = 2 × Row 2, so $|A| = 0$ immediately!

Don’t waste time calculating!


Quick Calculation Techniques for JEE

Technique 1: Factor Out Common Factors

If a row/column has a common factor, take it out:

$$\begin{vmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \\ 7 & 8 & 9 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 7 & 8 & 9 \end{vmatrix}$$

Technique 2: Create Zeros Using Row Operations

Use the property: $R_i \to R_i + kR_j$ doesn’t change the determinant!

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 11 \end{vmatrix}$$

$R_2 \to R_2 - 2R_1$ and $R_3 \to R_3 - 3R_1$:

$$= \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{vmatrix}$$

Expand along Column 1:

$$= 1 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2 - 1 = 1$$

Technique 3: Pattern Recognition

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b-a)(c-a)(c-b)$$

This is a Vandermonde determinant — memorize it for JEE!

More patterns in Properties of Determinants.


Practice Problems

Level 1: Foundation (NCERT)

Problem 1.1

Evaluate: $\begin{vmatrix} 3 & -2 \\ 4 & 5 \end{vmatrix}$

Solution:

$$= (3)(5) - (-2)(4) = 15 + 8 = 23$$

Answer: 23

Problem 1.2

Find: $\begin{vmatrix} 6 & 3 \\ 10 & 5 \end{vmatrix}$

Solution:

$$= (6)(5) - (3)(10) = 30 - 30 = 0$$

The matrix is singular!

Answer: 0

Problem 1.3

Evaluate using Sarrus rule: $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix}$

Solution:

This is a diagonal matrix!

$$= 1 \cdot 2 \cdot 3 = 6$$

Answer: 6

Level 2: JEE Main

Problem 2.1

Evaluate: $\begin{vmatrix} 2 & 3 & 5 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$

Solution:

Using Sarrus rule:

Positive: $2(5)(9) + 3(6)(7) + 5(4)(8) = 90 + 126 + 160 = 376$

Negative: $5(5)(7) + 2(6)(8) + 3(4)(9) = 175 + 96 + 108 = 379$

$$|A| = 376 - 379 = -3$$

Answer: $-3$

Problem 2.2

Without expanding, show that: $\begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 5 & 7 & 9 \end{vmatrix} = 0$

Solution:

Notice Row 2 = 2 × Row 1

When one row is a scalar multiple of another, determinant = 0.

Answer: $|A| = 0$ (no calculation needed!)

Problem 2.3

Evaluate by choosing the best row/column: $\begin{vmatrix} 1 & 0 & 3 \\ 2 & 0 & 5 \\ 4 & 0 & 6 \end{vmatrix}$

Solution:

Column 2 is all zeros, so $|A| = 0$ immediately!

Alternatively, expand along Column 2:

$$= -0 + 0 - 0 = 0$$

Answer: 0

Level 3: JEE Advanced

Problem 3.1

If $\begin{vmatrix} x & 2 & 3 \\ 4 & x & 5 \\ 6 & 7 & x \end{vmatrix} = 0$, find the sum of all possible values of $x$.

Solution:

Expand using first row:

$$x(x^2 - 35) - 2(4x - 30) + 3(28 - 6x) = 0$$ $$x^3 - 35x - 8x + 60 + 84 - 18x = 0$$ $$x^3 - 61x + 144 = 0$$

By sum of roots of cubic $ax^3 + bx^2 + cx + d = 0$:

Sum of roots $= -\frac{b}{a} = 0$ (since coefficient of $x^2$ is 0)

Answer: Sum = 0

Problem 3.2

Prove that: $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b-a)(c-a)(c-b)$

Solution:

Apply $C_2 \to C_2 - C_1$ and $C_3 \to C_3 - C_1$:

$$= \begin{vmatrix} 1 & 0 & 0 \\ a & b-a & c-a \\ a^2 & b^2-a^2 & c^2-a^2 \end{vmatrix}$$ $$= \begin{vmatrix} 1 & 0 & 0 \\ a & b-a & c-a \\ a^2 & (b-a)(b+a) & (c-a)(c+a) \end{vmatrix}$$

Factor out from columns 2 and 3:

$$= (b-a)(c-a) \begin{vmatrix} 1 & 0 & 0 \\ a & 1 & 1 \\ a^2 & b+a & c+a \end{vmatrix}$$

Expand along Row 1:

$$= (b-a)(c-a) \begin{vmatrix} 1 & 1 \\ b+a & c+a \end{vmatrix}$$ $$= (b-a)(c-a)[(c+a) - (b+a)]$$ $$= (b-a)(c-a)(c-b)$$

Proved!

Problem 3.3

Evaluate: $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix}$ where $a, b, c \neq 0$

Solution:

Apply $R_1 \to R_1 - R_3$ and $R_2 \to R_2 - R_3$:

$$= \begin{vmatrix} a & 0 & -c \\ 0 & b & -c \\ 1 & 1 & 1+c \end{vmatrix}$$

Expand along Row 1:

$$= a \begin{vmatrix} b & -c \\ 1 & 1+c \end{vmatrix} - 0 + (-c) \begin{vmatrix} 0 & b \\ 1 & 1 \end{vmatrix}$$ $$= a[b(1+c) + c] - c[0 - b]$$ $$= a[b + bc + c] + bc$$ $$= ab + abc + ac + bc$$ $$= abc + ab + bc + ca$$

Answer: $abc + ab + bc + ca$


Quick Revision Box

ConceptFormula/Rule
$2 \times 2$ determinant$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$
Sarrus rule3 positive diagonals - 3 negative diagonals
Expansion signsCheckerboard: $(-1)^{i+j}$
Diagonal matrixProduct of diagonal elements
Triangular matrixProduct of diagonal elements
Zero row/column$\|A\| = 0$
Identical rows$\|A\| = 0$
Proportional rows$\|A\| = 0$
Identity matrix$\|I\| = 1$
Best expansionChoose row/column with most zeros

Within Matrices & Determinants Chapter

Math Connections

Real-World Applications

  • Linear transformations — Determinant as scaling factor
  • Computer graphics — Check if transformation preserves orientation
  • Systems of equations — Solvability condition
  • Cryptography — Key validity check

Teacher’s Summary

Key Takeaways
  1. Determinant is a scalar associated with square matrices only
  2. 2×2 formula: $ad - bc$ (main diagonal minus off-diagonal)
  3. 3×3 methods: Sarrus rule (quick) or expansion (systematic)
  4. Sign pattern: Checkerboard starting with $+$ at $(1,1)$: $(-1)^{i+j}$
  5. Smart expansion: Choose row/column with most zeros
  6. Quick checks: Zero row, identical rows, proportional rows → $|A| = 0$
  7. Triangular/diagonal: Just multiply diagonal elements
  8. Sarrus ONLY for 3×3 — doesn’t work for larger matrices!

“Before calculating, always check for zeros, identical rows, or proportional rows — save precious JEE time!”

Exam Strategy:

  • For $2 \times 2$: Direct formula (5 seconds)
  • For $3 \times 3$ numerical: Sarrus rule (30 seconds)
  • For $3 \times 3$ with zeros: Expand along best row/column (45 seconds)
  • For symbolic: Use properties and row operations (next chapter!)

Next: Minors and Cofactors →