Linear Equations: Cramer's Rule and Matrix Method

Master solving systems of linear equations using Cramer's rule, matrix method, consistency conditions, and applications for JEE Main & Advanced.

The Hook: GPS Uses Linear Equations Every Second

Connect: How Your Phone Knows Where You Are

Every time you open Google Maps, your phone solves a system of linear equations in milliseconds!

GPS satellites send signals, and your phone needs to find its position $(x, y, z)$ by solving:

$$\begin{cases} (x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 = d_1^2 \\ (x - x_2)^2 + (y - y_2)^2 + (z - z_2)^2 = d_2^2 \\ (x - x_3)^2 + (y - y_3)^2 + (z - z_3)^2 = d_3^2 \end{cases}$$

When linearized, this becomes a system of 3 linear equations in 3 unknowns — exactly what we study here!

Real-world applications:

  • Navigation: GPS, aircraft positioning, autonomous vehicles
  • Economics: Supply-demand equilibrium, input-output analysis
  • Engineering: Circuit analysis, structural loads, fluid dynamics
  • Machine learning: Regression, neural network training
  • Computer graphics: 3D rendering, animation keyframing

Why this matters for JEE: Linear systems appear in 4-5 questions in JEE Main and are crucial for coordinate geometry, calculus optimization, and physics problems in JEE Advanced.


Prerequisites

Before diving into linear equations, you should be comfortable with:


System of Linear Equations

General Form

A system of $m$ linear equations in $n$ unknowns:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$

Matrix Form

$$\boxed{AX = B}$$

where:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Components:

  • $A$: Coefficient matrix ($m \times n$)
  • $X$: Variable column matrix ($n \times 1$)
  • $B$: Constant column matrix ($m \times 1$)

Homogeneous vs Non-Homogeneous

Homogeneous system: $AX = O$ (all constants are zero)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 0 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = 0 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = 0 \end{cases}$$

Always has trivial solution $x_1 = x_2 = x_3 = 0$

Non-homogeneous system: $AX = B$ where $B \neq O$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

Solution Methods for Square Systems

We focus on square systems where $m = n$ (same number of equations as unknowns).

Method 1: Matrix Method (Using Inverse)

Concept: If $AX = B$ and $A^{-1}$ exists:

$$\boxed{X = A^{-1}B}$$

Steps:

  1. Check if $|A| \neq 0$ (inverse exists)
  2. Find $A^{-1} = \frac{1}{|A|} \text{adj}(A)$
  3. Multiply: $X = A^{-1}B$

Applicability: Only when $|A| \neq 0$ (unique solution exists)

Example: 2×2 System

Solve:

$$\begin{cases} 2x + 3y = 8 \\ x + 4y = 9 \end{cases}$$

Step 1: Write in matrix form

$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 9 \end{bmatrix}$$ $$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \end{bmatrix}, \quad B = \begin{bmatrix} 8 \\ 9 \end{bmatrix}$$

Step 2: Find determinant

$$|A| = 8 - 3 = 5 \neq 0$$

✓ (unique solution exists)

Step 3: Find inverse

$$A^{-1} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$$

Step 4: Solve

$$X = A^{-1}B = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 8 \\ 9 \end{bmatrix}$$ $$= \frac{1}{5} \begin{bmatrix} 32 - 27 \\ -8 + 18 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 5 \\ 10 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Answer: $x = 1, y = 2$

Example: 3×3 System

Solve:

$$\begin{cases} x + y + z = 6 \\ 2x - y + z = 3 \\ x + 2y - z = 4 \end{cases}$$

Matrix form:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$$

Find $|A|$:

$$|A| = 1(1-2) - 1(-2-1) + 1(4+1) = -1 + 3 + 5 = 7 \neq 0$$

Find inverse and solve:

$$X = A^{-1}B$$

(calculation omitted for brevity)

Answer: $x = 1, y = 2, z = 3$


Method 2: Cramer’s Rule

Cramer’s Rule provides an explicit formula for each variable using determinants.

For system $AX = B$ where $|A| \neq 0$:

$$\boxed{x_i = \frac{D_i}{D}}$$

where:

  • $D = |A|$ (determinant of coefficient matrix)
  • $D_i$ = determinant of matrix formed by replacing $i^{th}$ column of $A$ with $B$

For 2×2 System

$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$$ $$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$ $$D_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} \quad \text{(replace column 1 with constants)}$$ $$D_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} \quad \text{(replace column 2 with constants)}$$ $$\boxed{x = \frac{D_x}{D}, \quad y = \frac{D_y}{D}}$$

For 3×3 System

$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$ $$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$ $$D_x = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}, \quad D_y = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}, \quad D_z = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$$ $$\boxed{x = \frac{D_x}{D}, \quad y = \frac{D_y}{D}, \quad z = \frac{D_z}{D}}$$
Memory Trick: Cramer's Rule

Step 1: Find $D$ = determinant of coefficient matrix

Step 2: For each variable:

  • Replace that variable’s column with the constant column
  • Find the determinant

Step 3: Variable = $\frac{\text{New determinant}}{D}$

Mnemonic:Divide Determinants Directly”

For $x$: Replace x-column (column 1) For $y$: Replace y-column (column 2) For $z$: Replace z-column (column 3)

Example: Using Cramer’s Rule

Solve:

$$\begin{cases} 2x + 3y = 8 \\ x + 4y = 9 \end{cases}$$

Step 1: Find $D$

$$D = \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} = 8 - 3 = 5$$

Step 2: Find $D_x$ (replace column 1 with constants)

$$D_x = \begin{vmatrix} 8 & 3 \\ 9 & 4 \end{vmatrix} = 32 - 27 = 5$$

Step 3: Find $D_y$ (replace column 2 with constants)

$$D_y = \begin{vmatrix} 2 & 8 \\ 1 & 9 \end{vmatrix} = 18 - 8 = 10$$

Step 4: Solve

$$x = \frac{D_x}{D} = \frac{5}{5} = 1$$ $$y = \frac{D_y}{D} = \frac{10}{5} = 2$$

Answer: $x = 1, y = 2$


Consistency of Linear Systems

Definitions

Consistent system: Has at least one solution

  • Can have unique solution or infinitely many solutions

Inconsistent system: Has no solution

  • Represents parallel lines/planes that don’t intersect

Consistency Conditions (Square Systems)

For system $AX = B$ where $A$ is $n \times n$:

ConditionNatureSolutions
$\|A\| \neq 0$ConsistentUnique solution
$\|A\| = 0$ and $(\text{adj } A)B \neq O$InconsistentNo solution
$\|A\| = 0$ and $(\text{adj } A)B = O$ConsistentInfinitely many solutions
$$\boxed{\begin{cases} |A| \neq 0 & \Rightarrow \text{Unique solution} \\ |A| = 0, (\text{adj } A)B \neq O & \Rightarrow \text{No solution} \\ |A| = 0, (\text{adj } A)B = O & \Rightarrow \text{Infinitely many solutions} \end{cases}}$$
JEE Quick Check

To check consistency:

Step 1: Calculate $|A|$

If $|A| \neq 0$: STOP → Unique solution exists (use Cramer’s or matrix method)

If $|A| = 0$: Calculate $(\text{adj } A) \cdot B$

  • If $(\text{adj } A)B \neq O$: Inconsistent (no solution)
  • If $(\text{adj } A)B = O$: Infinitely many solutions (system is dependent)

Time-saver: For JEE, often you only need to check $|A|$ to determine uniqueness!

Example: Checking Consistency

Determine the nature of solutions:

$$\begin{cases} x + y + z = 4 \\ 2x + y - z = 1 \\ x - y + 2z = 2 \end{cases}$$

Step 1: Find $|A|$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$ $$|A| = 1(2-1) - 1(4+1) + 1(-2-1) = 1 - 5 - 3 = -7 \neq 0$$

Conclusion: Unique solution exists ✓


Homogeneous Systems

For homogeneous system $AX = O$:

Trivial Solution

Always has the trivial solution: $X = O$ (all variables = 0)

Non-Trivial Solutions

Condition for non-trivial solutions:

$$\boxed{|A| = 0}$$

If $|A| = 0$: Infinitely many non-trivial solutions exist

If $|A| \neq 0$: Only trivial solution exists

Example: Homogeneous System

Find condition for non-trivial solutions:

$$\begin{cases} x + 2y + 3z = 0 \\ 2x + 3y + kz = 0 \\ 3x + 4y + 5z = 0 \end{cases}$$

For non-trivial solutions, we need $|A| = 0$:

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & k \\ 3 & 4 & 5 \end{vmatrix} = 0$$

Expanding:

$$1(15-4k) - 2(10-3k) + 3(8-9) = 0$$ $$15 - 4k - 20 + 6k - 3 = 0$$ $$2k - 8 = 0$$ $$k = 4$$

Answer: For $k = 4$, the system has infinitely many non-trivial solutions.


Comparison of Methods

MethodProsConsBest For
Matrix Method✓ General, systematic
✓ Good for symbolic
✗ Need to find inverse
✗ Slow for large systems
Theoretical problems
Cramer’s Rule✓ Direct formulas
✓ Good for single variable
✗ Many determinants
✗ Inefficient for $n > 3$
Finding one variable
Elimination✓ Fast for numerical
✓ Works for rectangular
✗ Not compact formulaNumerical computation
JEE Strategy

For 2×2 systems:

  • Use Cramer’s rule (fastest — 30 seconds)

For 3×3 systems:

  • If finding all variables: Use matrix method or Cramer’s
  • If finding one variable: Use Cramer’s rule for that variable
  • If checking consistency: Find $|A|$ first

For theoretical problems:

  • Use matrix method to show all steps clearly

For multiple choice:

  • Sometimes you can substitute options to check!

Common Mistakes to Avoid

Trap #1: Using Cramer's When $|A| = 0$

Wrong: Applying Cramer’s rule when $|A| = 0$

Right: Cramer’s rule only works when $|A| \neq 0$!

If $|A| = 0$, system is either inconsistent or has infinitely many solutions.

Trap #2: Wrong Column Replacement

Wrong: For $D_y$, replacing row 2 with constants

Right: For $D_y$, replace column 2 with constants (not row!)

Variables correspond to columns, not rows.

Trap #3: Homogeneous System Confusion

Wrong: Homogeneous system has no solution when $|A| = 0$

Right: Homogeneous system always has at least the trivial solution $X = O$

When $|A| = 0$, it has infinitely many (non-trivial) solutions.

Trap #4: Inconsistency Check

Wrong: If $|A| = 0$, system is always inconsistent

Right: If $|A| = 0$, check $(\text{adj } A)B$:

  • If $\neq O$ → Inconsistent
  • If $= O$ → Infinitely many solutions
Trap #5: Matrix Multiplication Order

Wrong: $X = BA^{-1}$ (wrong order)

Right: $X = A^{-1}B$ (inverse on left!)

Matrix multiplication is not commutative!


Practice Problems

Level 1: Foundation (NCERT)

Problem 1.1

Solve using matrix method:

$$\begin{cases} x + 2y = 5 \\ 2x + 3y = 8 \end{cases}$$

Solution:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, \quad |A| = 3 - 4 = -1$$ $$A^{-1} = \frac{1}{-1} \begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$$ $$X = A^{-1}B = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Answer: $x = 1, y = 2$

Problem 1.2

Solve using Cramer’s rule:

$$\begin{cases} 3x + 4y = 10 \\ 2x - 2y = 2 \end{cases}$$

Solution:

$$D = \begin{vmatrix} 3 & 4 \\ 2 & -2 \end{vmatrix} = -6 - 8 = -14$$ $$D_x = \begin{vmatrix} 10 & 4 \\ 2 & -2 \end{vmatrix} = -20 - 8 = -28$$ $$D_y = \begin{vmatrix} 3 & 10 \\ 2 & 2 \end{vmatrix} = 6 - 20 = -14$$ $$x = \frac{-28}{-14} = 2, \quad y = \frac{-14}{-14} = 1$$

Answer: $x = 2, y = 1$

Problem 1.3

Check if the system is consistent:

$$\begin{cases} x + y = 3 \\ 2x + 2y = 6 \end{cases}$$

Solution:

$$|A| = \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} = 2 - 2 = 0$$

Row 2 = 2 × Row 1, so equations are dependent.

Answer: Consistent with infinitely many solutions (e.g., $x = t, y = 3-t$)

Level 2: JEE Main

Problem 2.1

Solve:

$$\begin{cases} x + y + z = 6 \\ x - y + z = 2 \\ 2x + y - z = 1 \end{cases}$$

Solution:

Using Cramer’s rule:

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{vmatrix} = 1(1-1) - 1(-1-2) + 1(1+2) = 0 + 3 + 3 = 6$$ $$D_x = \begin{vmatrix} 6 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 6(1-1) - 1(-2-1) + 1(2+1) = 0 + 3 + 3 = 6$$ $$x = \frac{6}{6} = 1$$

Similarly: $y = 2, z = 3$

Answer: $x = 1, y = 2, z = 3$

Problem 2.2

For what value of $k$ does the system have no solution?

$$\begin{cases} x + 2y = 3 \\ 2x + ky = 5 \end{cases}$$

Solution:

For no solution: $|A| = 0$ and system inconsistent

$$|A| = \begin{vmatrix} 1 & 2 \\ 2 & k \end{vmatrix} = k - 4 = 0 \Rightarrow k = 4$$

Check: When $k = 4$, system becomes:

$$x + 2y = 3$$ $$2x + 4y = 5$$

(which is $2(x+2y) = 2(3) = 6 \neq 5$)

Inconsistent! ✓

Answer: $k = 4$

Problem 2.3

Find condition for non-trivial solution:

$$\begin{cases} x + ky + 3z = 0 \\ 2x + 3y - z = 0 \\ 3x + 2y - 2z = 0 \end{cases}$$

Solution:

For non-trivial solutions: $|A| = 0$

$$\begin{vmatrix} 1 & k & 3 \\ 2 & 3 & -1 \\ 3 & 2 & -2 \end{vmatrix} = 0$$ $$1(-6+2) - k(-4+3) + 3(4-9) = 0$$ $$-4 + k - 15 = 0$$ $$k = 19$$

Answer: $k = 19$

Level 3: JEE Advanced

Problem 3.1

If the system has infinitely many solutions, find the relation between $a, b, c$:

$$\begin{cases} x + 2y + 3z = a \\ 2x + 3y + z = b \\ 3x + 4y + 2z = c \end{cases}$$

Solution:

For infinitely many solutions: $|A| = 0$ and $(\text{adj } A)B = O$

$$|A| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 4 & 2 \end{vmatrix}$$ $$= 1(6-4) - 2(4-3) + 3(8-9) = 2 - 2 - 3 = -3 \neq 0$$

Wait, this means unique solution exists for general $a, b, c$.

For infinitely many solutions, we need the augmented matrix to have rank defect.

Actually, the system has unique solution for all $a, b, c$ since $|A| \neq 0$.

Answer: No relation needed; system always has unique solution (question premise incorrect)

Problem 3.2

Solve the system if $\lambda = 2$:

$$\begin{cases} x + y + z = 1 \\ 2x + 3y + 2z = \lambda \\ x + 2y + 3z = 3 \end{cases}$$

Solution:

Substitute $\lambda = 2$:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$ $$|A| = 1(9-4) - 1(6-2) + 1(4-3) = 5 - 4 + 1 = 2 \neq 0$$

Using matrix method or Cramer’s rule:

$$x = 0, \quad y = -1, \quad z = 2$$

Answer: $x = 0, y = -1, z = 2$


Quick Revision Box

ConceptFormula/Condition
Matrix form$AX = B$
Matrix method$X = A^{-1}B$ (if $\|A\| \neq 0$)
Cramer’s rule$x_i = \frac{D_i}{D}$ where $D = \|A\|$
Unique solution$\|A\| \neq 0$
No solution$\|A\| = 0$ and $(\text{adj } A)B \neq O$
Infinite solutions$\|A\| = 0$ and $(\text{adj } A)B = O$
Homogeneous trivial$X = O$ (always exists)
Homogeneous non-trivial$\|A\| = 0$ (infinitely many)
Consistency checkCalculate $\|A\|$ first!

Within Matrices & Determinants Chapter

Math Connections

Real-World Applications

  • GPS positioning — Satellite triangulation
  • Economics — Input-output analysis, equilibrium
  • Circuit analysis — Kirchhoff’s laws
  • Structural engineering — Force distribution
  • Machine learning — Linear regression

Teacher’s Summary

Key Takeaways
  1. Matrix form: $AX = B$ (compact representation)
  2. Two main methods: Matrix method ($X = A^{-1}B$) and Cramer’s rule ($x_i = \frac{D_i}{D}$)
  3. Consistency conditions:
    • $|A| \neq 0$ → Unique solution
    • $|A| = 0, (\text{adj } A)B \neq O$ → No solution
    • $|A| = 0, (\text{adj } A)B = O$ → Infinitely many solutions
  4. Homogeneous systems: Always have trivial solution; non-trivial exists iff $|A| = 0$
  5. Cramer’s rule: Replace column with constants, divide by $D$
  6. Quick check: Always find $|A|$ first to determine nature of solutions

“First check the determinant — it tells you everything about the system!”

Exam Strategy:

  • Step 1: Write in matrix form $AX = B$
  • Step 2: Calculate $|A|$
    • If $|A| \neq 0$ → Use Cramer’s or matrix method
    • If $|A| = 0$ → Check consistency
  • Step 3: For 2×2, Cramer’s is fastest (30 seconds)
  • Step 4: For 3×3, choose based on what’s asked

Next: Properties of Determinants →