Matrix Algebra: Operations and Properties

Master matrix addition, scalar multiplication, matrix multiplication, transpose operations and their properties for JEE Main & Advanced.

The Hook: The Mathematics Behind Movie Transformations

Connect: How Pixar Animates Characters

When you watch Toy Story or Spider-Man: Into the Spider-Verse, every character movement is controlled by matrix operations!

Buzz Lightyear’s rotation? Matrix multiplication. Scaling a character bigger? Scalar multiplication of matrices. Moving across the screen? Matrix addition.

A simple character rotation by 45° uses:

$$R_{45°} = \begin{bmatrix} \cos 45° & -\sin 45° \\ \sin 45° & \cos 45° \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Combining rotations? Multiply rotation matrices! That’s why matrix multiplication is fundamental — it combines transformations.

Real applications: Game engines (Unity, Unreal), robot arm movements, GPS coordinate transformations, Google Search ranking algorithm (PageRank uses matrix powers!).

Why this matters for JEE: Matrix operations appear in 4-5 questions in JEE Main and form the basis for solving systems of equations, eigenvalue problems, and coordinate geometry transformations in JEE Advanced.


Interactive: Matrix Transformations Visualizer

See how a 2x2 matrix transforms the coordinate plane! Adjust the matrix values or use preset buttons to explore rotations, reflections, scaling, and shearing. Watch how the unit square and basis vectors transform in real-time.

What to observe
  • The determinant tells you the area scaling factor (negative = orientation flip)
  • Eigenvectors (dashed orange/cyan lines) are directions that only get scaled, not rotated
  • Basis vectors i’ (blue) and j’ (green) show where the original i-hat and j-hat land
  • The matrix columns [a, c] and [b, d] directly give you the transformed basis vectors!

Prerequisites

Before diving into matrix algebra, you should be comfortable with:

  • Matrix Basics — Matrix notation, types, and order
  • Basic algebra — Distributive property, associative laws
  • Ordered pairs and functions

Matrix Addition and Subtraction

Definition

Two matrices can be added or subtracted if and only if they have the same order.

For matrices $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$:

$$\boxed{(A + B)_{ij} = a_{ij} + b_{ij}}$$ $$\boxed{(A - B)_{ij} = a_{ij} - b_{ij}}$$

In words: Add (or subtract) corresponding elements.

Example

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$ $$A + B = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$ $$A - B = \begin{bmatrix} 1-5 & 2-6 \\ 3-7 & 4-8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}$$

Properties of Addition

For matrices $A, B, C$ of the same order:

PropertyFormulaName
Commutative$A + B = B + A$Order doesn’t matter
Associative$(A + B) + C = A + (B + C)$Grouping doesn’t matter
Additive Identity$A + O = O + A = A$Zero matrix is identity
Additive Inverse$A + (-A) = O$Negative exists
Memory Trick

Matrix addition behaves exactly like adding numbers!

Just remember: Same order required — you can’t add a $2 \times 2$ to a $3 \times 3$.

Think: You can’t add apples to a table of different dimensions!


Scalar Multiplication

Definition

Multiplying a matrix by a scalar (real number) $k$:

$$\boxed{(kA)_{ij} = k \cdot a_{ij}}$$

In words: Multiply every element by $k$.

Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad 3A = \begin{bmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{bmatrix}$$

Properties of Scalar Multiplication

For scalars $k, l$ and matrices $A, B$:

PropertyFormula
Associative with scalars$k(lA) = (kl)A$
Distributive over matrix addition$k(A + B) = kA + kB$
Distributive over scalar addition$(k + l)A = kA + lA$
Identity$1 \cdot A = A$
Zero$0 \cdot A = O$
Negation$(-1)A = -A$

Matrix Multiplication

The Rule

Matrices $A$ and $B$ can be multiplied to get $AB$ if and only if:

$$\boxed{\text{Number of columns in } A = \text{Number of rows in } B}$$

If $A$ is $m \times n$ and $B$ is $n \times p$, then $AB$ is $m \times p$.

Visual memory:

$$A_{m \times \color{red}{n}} \cdot B_{\color{red}{n} \times p} = (AB)_{m \times p}$$

The middle indices must match!

Definition

For $A = [a_{ij}]_{m \times n}$ and $B = [b_{jk}]_{n \times p}$:

$$\boxed{(AB)_{ik} = \sum_{j=1}^{n} a_{ij} \cdot b_{jk}}$$

In words: Element $(i,k)$ of $AB$ = (row $i$ of $A$) $\cdot$ (column $k$ of $B$)

Step-by-Step Process

To find element $(i,k)$ in $AB$:

  1. Take row $i$ of matrix $A$
  2. Take column $k$ of matrix $B$
  3. Multiply corresponding elements
  4. Add all the products

Example 1: Basic Multiplication

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

Find $AB$:

$(AB)_{11}$ = Row 1 of $A$ $\cdot$ Column 1 of $B$ = $(1)(5) + (2)(7) = 5 + 14 = 19$

$(AB)_{12}$ = Row 1 of $A$ $\cdot$ Column 2 of $B$ = $(1)(6) + (2)(8) = 6 + 16 = 22$

$(AB)_{21}$ = Row 2 of $A$ $\cdot$ Column 1 of $B$ = $(3)(5) + (4)(7) = 15 + 28 = 43$

$(AB)_{22}$ = Row 2 of $A$ $\cdot$ Column 2 of $B$ = $(3)(6) + (4)(8) = 18 + 32 = 50$

$$AB = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

Example 2: Different Orders

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}_{2 \times 3}, \quad B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_{3 \times 1}$$

$AB$ is possible (columns of $A$ = 3, rows of $B$ = 3) ✓

Result will be $2 \times 1$:

$$AB = \begin{bmatrix} (1)(1) + (2)(2) + (3)(3) \\ (4)(1) + (5)(2) + (6)(3) \end{bmatrix} = \begin{bmatrix} 14 \\ 32 \end{bmatrix}$$

Can we compute $BA$?

$B$ is $3 \times 1$, $A$ is $2 \times 3$

Columns of $B$ = 1, Rows of $A$ = 2 → NO, $BA$ is not defined! ✗

Critical JEE Concept

Matrix multiplication is NOT commutative!

$$AB \neq BA \text{ in general}$$

In fact, even if $AB$ exists, $BA$ might not exist!

Example: If $A$ is $2 \times 3$ and $B$ is $3 \times 4$:

  • $AB$ exists (and is $2 \times 4$)
  • $BA$ does NOT exist (columns of $B$ = 4, rows of $A$ = 2)

JEE Trap: Never assume $AB = BA$! Always check orders first.

Properties of Matrix Multiplication

For matrices with appropriate orders:

PropertyFormulaName
NOT Commutative$AB \neq BA$ (generally)Order matters!
Associative$(AB)C = A(BC)$Grouping doesn’t matter
Distributive (left)$A(B + C) = AB + AC$Left distribution
Distributive (right)$(A + B)C = AC + BC$Right distribution
Identity$AI = IA = A$Identity matrix
Zero$AO = OA = O$Zero matrix
Scalar$k(AB) = (kA)B = A(kB)$Scalar associativity

Special Cases Where $AB = BA$

Matrices do commute when:

  1. One matrix is the identity: $AI = IA$
  2. One matrix is a scalar matrix: $A(\lambda I) = (\lambda I)A$
  3. Both are diagonal matrices (of same order)
  4. Special matrix pairs (rare, must verify)
Memory Trick: Matrix Multiplication

Think of it as “Row meets Column”

  1. Check if multiplication is possible: middle numbers match

    • $A_{2 \times \color{red}{3}} \cdot B_{\color{red}{3} \times 4}$ ✓ → Result is $2 \times 4$
  2. To find an element: Row from first, Column from second

    • $(AB)_{23}$ = Row 2 of $A$ times Column 3 of $B$
  3. Order matters: $AB \neq BA$ (unlike regular numbers!)

Mnemonic:Remember Commuting Breaks” (RCB) — Row-Column-Breaks (no commutative property)


Transpose of a Matrix

Definition

The transpose of a matrix $A$, denoted $A^T$ (or $A'$), is obtained by interchanging rows and columns.

If $A = [a_{ij}]_{m \times n}$, then:

$$\boxed{A^T = [a_{ji}]_{n \times m}}$$

In words: Row $i$ of $A$ becomes column $i$ of $A^T$.

Examples

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}_{2 \times 3} \Rightarrow A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}_{3 \times 2}$$ $$B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \Rightarrow B^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Row matrix ↔ Column matrix:

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Properties of Transpose

PropertyFormulaNote
Double transpose$(A^T)^T = A$Transpose twice = original
Addition$(A + B)^T = A^T + B^T$Distributes over addition
Scalar multiplication$(kA)^T = kA^T$Scalar comes out
Multiplication$(AB)^T = B^T A^T$ORDER REVERSES!
Extended multiplication$(ABC)^T = C^T B^T A^T$Reverse order
Super Important JEE Property!
$$(AB)^T = B^T A^T$$

NOT $A^T B^T$! The order reverses!

Think of it like taking off shoes and socks:

  • You put them on: Socks first, then shoes
  • You take them off: Shoes first, then socks (reverse order!)

Common JEE mistake: Writing $(AB)^T = A^T B^T$ ✗

Transpose and Matrix Types

Matrix TypeTranspose Property
Symmetric$A^T = A$
Skew-symmetric$A^T = -A$
Diagonal$D^T = D$ (always symmetric)
Identity$I^T = I$
Orthogonal$A^T A = AA^T = I$

Important Formulas and Results

Symmetric and Skew-Symmetric Decomposition

Every square matrix can be uniquely expressed as:

$$\boxed{A = \frac{A + A^T}{2} + \frac{A - A^T}{2}}$$

where:

  • $P = \frac{A + A^T}{2}$ is symmetric ($P^T = P$)
  • $Q = \frac{A - A^T}{2}$ is skew-symmetric ($Q^T = -Q$)

Proof:

$$P^T = \left(\frac{A + A^T}{2}\right)^T = \frac{A^T + A}{2} = P$$ $$Q^T = \left(\frac{A - A^T}{2}\right)^T = \frac{A^T - A}{2} = -\frac{A - A^T}{2} = -Q$$

Example

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$ $$A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$ $$P = \frac{1}{2}\begin{bmatrix} 2 & 5 \\ 5 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2.5 \\ 2.5 & 4 \end{bmatrix}$$

(Symmetric)

$$Q = \frac{1}{2}\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -0.5 \\ 0.5 & 0 \end{bmatrix}$$

(Skew-symmetric)

Verify: $P + Q = A$ ✓


Common Mistakes to Avoid

Trap #1: Matrix Multiplication Order

Wrong: Assuming $AB = BA$

Right: Always check! Matrix multiplication is not commutative.

Even if both $AB$ and $BA$ exist, they’re usually different!

Example:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$ $$AB = \begin{bmatrix} 7 & 2 \\ 3 & 1 \end{bmatrix}, \quad BA = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}$$

$AB \neq BA$ !

Trap #2: Transpose of Product

Wrong: $(AB)^T = A^T B^T$

Right: $(AB)^T = B^T A^T$ (order reverses!)

JEE Example: If $(AB)^T = BA$, what can you conclude? $B^T A^T = BA$

This happens when $A^T = B$ and $B^T = A$, or special symmetric cases.

Trap #3: Order Compatibility

Wrong: Any two matrices can be multiplied

Right: Check if multiplication is defined!

For $AB$: Columns of $A$ must equal rows of $B$

Example: Can you multiply $A_{3 \times 2}$ and $B_{4 \times 3}$?

NO! Columns of $A$ = 2, Rows of $B$ = 4 → Not compatible ✗

Trap #4: Zero Product

Wrong: If $AB = O$, then $A = O$ or $B = O$

Right: $AB = O$ does NOT imply either matrix is zero!

Counterexample:

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$ $$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

but neither $A$ nor $B$ is zero!

Matrix algebra doesn’t have the “zero product property” of real numbers!

Trap #5: Cancellation

Wrong: If $AB = AC$ and $A \neq O$, then $B = C$

Right: You cannot cancel matrices like numbers!

Cancellation requires $A$ to be invertible (non-singular).

If $|A| \neq 0$, then $AB = AC \Rightarrow B = C$ ✓

But if $|A| = 0$, cancellation fails!


Power of a Matrix

For a square matrix $A$:

$$A^2 = A \cdot A, \quad A^3 = A \cdot A \cdot A, \quad A^n = \underbrace{A \cdot A \cdots A}_{n \text{ times}}$$

Properties:

FormulaCondition
$A^m \cdot A^n = A^{m+n}$Always
$(A^m)^n = A^{mn}$Always
$A^m \cdot B^m = (AB)^m$Only if $AB = BA$
JEE Shortcut: Powers of Special Matrices

Identity matrix: $I^n = I$ for all $n$

Diagonal matrix:

$$D = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \Rightarrow D^n = \begin{bmatrix} a^n & 0 \\ 0 & b^n \end{bmatrix}$$

Nilpotent matrix: $A^k = O$ for some positive integer $k$

Example: $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then $A^2 = O$

Idempotent matrix: $A^2 = A$

Example: Projection matrices


Practice Problems

Level 1: Foundation (NCERT)

Problem 1.1

Find $A + B$ if $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$.

Solution:

$$A + B = \begin{bmatrix} 2+1 & 3+(-2) \\ 1+3 & 4+0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 4 & 4 \end{bmatrix}$$

Answer: $\begin{bmatrix} 3 & 1 \\ 4 & 4 \end{bmatrix}$

Problem 1.2

If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, find $A^T$.

Solution:

Interchange rows and columns:

$$A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Answer: $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$

Problem 1.3

Compute $AB$ if $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$.

Solution:

Check: $A$ is $2 \times 2$, $B$ is $2 \times 1$ → $AB$ is $2 \times 1$ ✓

$$AB = \begin{bmatrix} 1(5) + 2(6) \\ 3(5) + 4(6) \end{bmatrix} = \begin{bmatrix} 17 \\ 39 \end{bmatrix}$$

Answer: $\begin{bmatrix} 17 \\ 39 \end{bmatrix}$

Level 2: JEE Main

Problem 2.1

If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, verify that $(A^T)^T = A$.

Solution:

$$A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$ $$(A^T)^T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = A$$

Verified!

Problem 2.2

Express $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ as the sum of a symmetric and skew-symmetric matrix.

Solution:

$$A^T = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$$

Symmetric part:

$$P = \frac{A + A^T}{2} = \frac{1}{2}\begin{bmatrix} 4 & 7 \\ 7 & 10 \end{bmatrix} = \begin{bmatrix} 2 & 3.5 \\ 3.5 & 5 \end{bmatrix}$$

Skew-symmetric part:

$$Q = \frac{A - A^T}{2} = \frac{1}{2}\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -0.5 \\ 0.5 & 0 \end{bmatrix}$$

Verify: $P + Q = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} = A$ ✓

Answer: $P = \begin{bmatrix} 2 & 3.5 \\ 3.5 & 5 \end{bmatrix}$, $Q = \begin{bmatrix} 0 & -0.5 \\ 0.5 & 0 \end{bmatrix}$

Problem 2.3

If $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}$, find $(AB)^T$ and verify that $(AB)^T = B^T A^T$.

Solution:

$$AB = \begin{bmatrix} 2 & 3 \\ -2 & 25 \end{bmatrix}$$ $$(AB)^T = \begin{bmatrix} 2 & -2 \\ 3 & 25 \end{bmatrix}$$

Now:

$$B^T = \begin{bmatrix} 2 & 0 \\ 3 & 4 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & -1 \\ 0 & 7 \end{bmatrix}$$ $$B^T A^T = \begin{bmatrix} 2 & -2 \\ 3 & 25 \end{bmatrix}$$

$(AB)^T = B^T A^T$ ✓ Verified!

Level 3: JEE Advanced

Problem 3.1

If $A$ is a skew-symmetric matrix of odd order, prove that $|A| = 0$.

Solution:

For skew-symmetric matrix: $A^T = -A$

Taking determinant both sides:

$$|A^T| = |-A|$$

We know: $|A^T| = |A|$ and $|-A| = (-1)^n |A|$ where $n$ is the order.

$$|A| = (-1)^n |A|$$

Since $n$ is odd: $(-1)^n = -1$

$$|A| = -|A|$$ $$2|A| = 0$$ $$|A| = 0$$

Proved!

Problem 3.2

Find matrix $A$ such that $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ but $A \neq \pm I$.

Solution:

Try: $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Also try: $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ works!

Answer: Multiple solutions exist, e.g., $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ or $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

Problem 3.3

If $A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$, find $A^T A$ and interpret.

Solution:

$$A^T = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$ $$A^T A = \begin{bmatrix} \cos^2\theta + \sin^2\theta & -\cos\theta\sin\theta + \sin\theta\cos\theta \\ \sin\theta\cos\theta - \cos\theta\sin\theta & \sin^2\theta + \cos^2\theta \end{bmatrix}$$ $$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Interpretation: $A$ is an orthogonal matrix (rotation matrix).

Rotation matrices preserve length and angle, so $A^T A = I$.

Answer: $A^T A = I$ (orthogonal matrix)


Quick Revision Box

OperationRuleKey Point
Addition$(A+B)_{ij} = a_{ij} + b_{ij}$Same order required
Scalar multiplication$(kA)_{ij} = ka_{ij}$Multiply each element
Matrix multiplication$(AB)_{ik} = \sum a_{ij}b_{jk}$Columns of $A$ = Rows of $B$
Transpose$(A^T)_{ji} = a_{ij}$Rows ↔ Columns
$(AB)^T$$B^T A^T$Order reverses!
Symmetric decomp$A = \frac{A+A^T}{2} + \frac{A-A^T}{2}$Any square matrix
Commutative?$AB \neq BA$ generallyNOT commutative!

Within Matrices & Determinants Chapter

Math Connections

Real-World Applications

  • Computer Graphics — Combining transformations via matrix multiplication
  • Machine Learning — Gradient descent uses matrix operations
  • Cryptography — Hill cipher uses matrix multiplication
  • Economics — Leontief input-output model

Teacher’s Summary

Key Takeaways
  1. Addition/Subtraction: Only possible for matrices of same order
  2. Scalar multiplication: Multiply every element by the scalar
  3. Matrix multiplication: Columns of first = Rows of second (middle numbers match!)
  4. NOT commutative: $AB \neq BA$ in general — order matters!
  5. Transpose reverses order: $(AB)^T = B^T A^T$ (not $A^T B^T$!)
  6. Associative: $(AB)C = A(BC)$ — grouping doesn’t matter
  7. Symmetric decomposition: Any square matrix = symmetric + skew-symmetric
  8. Key property: $(A^T)^T = A$ (double transpose returns original)

“Master the transpose reversal rule — it’s in 80% of JEE Advanced matrix problems!”

Exam Strategy:

  • For multiplication: Always check order compatibility first!
  • For transpose of product: Reverse the order! $(ABC)^T = C^T B^T A^T$
  • Watch for non-commutative traps: Never assume $AB = BA$

Next: Determinants Evaluation →