Matrix Basics: Notation and Types

Master matrix notation, order, types of matrices including symmetric, skew-symmetric, diagonal, and identity matrices for JEE Main & Advanced.

The Hook: The Matrix in Your Pocket

Connect: Every Instagram Filter Uses Matrices

Ever wondered how Instagram applies filters to your photos in milliseconds? When you select “Nashville” or “Clarendon,” your phone multiplies a 3×3 color transformation matrix with millions of pixels simultaneously!

Each pixel’s RGB values are arranged in a matrix, and a transformation matrix changes the colors:

$$\begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} = \begin{bmatrix} 1.2 & 0.1 & 0 \\ 0 & 1.1 & 0.2 \\ 0.1 & 0 & 0.9 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Real applications: Computer graphics, 3D game rotations, Google’s PageRank algorithm, AI neural networks, encryption, and even solving traffic flow problems — all use matrices!

Why this matters for JEE: Matrices appear in 3-4 questions in JEE Main and form the foundation for determinants, linear equations, and advanced coordinate geometry in JEE Advanced.


Prerequisites

Before diving into matrices, you should be comfortable with:

  • Sets and Relations — Understanding of ordered pairs
  • Basic algebra — Working with variables and equations
  • Array/table representation — Organizing data in rows and columns

Interactive Demo: Matrix Visualization

Create Your Own Matrix

Click on elements to change values and see how matrix notation works!


What is a Matrix?

Definition

A matrix is a rectangular array of numbers (or expressions) arranged in rows and columns, enclosed in brackets.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Components:

  • Elements/Entries: The individual numbers $a_{ij}$ where $i$ = row number, $j$ = column number
  • Rows: Horizontal lines of elements
  • Columns: Vertical lines of elements

Order of a Matrix

The order (or dimension) of a matrix is given by:

$$\boxed{\text{Order} = m \times n}$$

where:

  • $m$ = number of rows
  • $n$ = number of columns

Read as: “m by n” or “m cross n”

Examples

Example 1
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Order: $2 \times 3$ (2 rows, 3 columns)

Elements: $a_{11} = 1, a_{12} = 2, a_{13} = 3, a_{21} = 4, a_{22} = 5, a_{23} = 6$

Example 2
$$B = \begin{bmatrix} 7 \\ -2 \\ 5 \end{bmatrix}$$

Order: $3 \times 1$ (3 rows, 1 column)


Notation and Element Reference

Standard Notation

A matrix is denoted by:

  • Capital letters: $A, B, C, M, X$
  • Elements denoted by corresponding lowercase letters with subscripts: $a_{ij}, b_{ij}$

Subscript Convention

For element $a_{ij}$:

  • First subscript $i$ → row number
  • Second subscript $j$ → column number
$$a_{ij} = \text{element in } i^{\text{th}} \text{ row and } j^{\text{th}} \text{ column}$$
Memory Trick: RC Cola

Think “RC” = Row first, Column second

Just like drinking RC Cola: R (row) comes before C (column)!

$a_{23}$ means: Row 2, Column 3 (not the other way around)

Compact Notation

A matrix $A$ with elements $a_{ij}$ can be written as:

$$A = [a_{ij}]_{m \times n}$$

Example: $A = [2i + 3j]_{2 \times 3}$ means:

$$A = \begin{bmatrix} 2(1) + 3(1) & 2(1) + 3(2) & 2(1) + 3(3) \\ 2(2) + 3(1) & 2(2) + 3(2) & 2(2) + 3(3) \end{bmatrix} = \begin{bmatrix} 5 & 8 & 11 \\ 7 & 10 & 13 \end{bmatrix}$$

Types of Matrices

1. Row Matrix

A matrix with only one row.

Order: $1 \times n$

Example: $A = \begin{bmatrix} 1 & -2 & 5 & 7 \end{bmatrix}$ is a $1 \times 4$ row matrix.

2. Column Matrix

A matrix with only one column.

Order: $m \times 1$

Example: $B = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$ is a $3 \times 1$ column matrix.

3. Square Matrix

A matrix where number of rows = number of columns.

Order: $n \times n$

Example: $C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is a $2 \times 2$ square matrix.

Important terms for square matrices:

Principal/Main Diagonal: Elements $a_{ii}$ where row number = column number

  • For $2 \times 2$: Elements $a_{11}, a_{22}$
  • For $3 \times 3$: Elements $a_{11}, a_{22}, a_{33}$

Trace: Sum of diagonal elements

$$\boxed{\text{tr}(A) = \sum_{i=1}^{n} a_{ii}}$$

Example: For $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, $\text{tr}(A) = 1 + 5 + 9 = 15$

4. Diagonal Matrix

A square matrix where all non-diagonal elements are zero.

$$a_{ij} = 0 \text{ when } i \neq j$$

Example: $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

Compact notation: $D = \text{diag}(3, -5, 2)$

Important

Diagonal elements can be zero! As long as all off-diagonal elements are zero, it’s a diagonal matrix.

$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is still diagonal.

5. Scalar Matrix

A diagonal matrix where all diagonal elements are equal.

$$a_{ij} = \begin{cases} k & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Example: $S = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} = 5I$

6. Identity Matrix (Unit Matrix)

A scalar matrix where all diagonal elements equal 1.

Denoted by $I$ or $I_n$ (for $n \times n$ identity matrix)

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Examples:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Property: $AI = IA = A$ (Identity is the “1” of matrix multiplication)

7. Zero/Null Matrix

A matrix where all elements are zero.

Denoted by $O$ or $0$

Example: $O = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is a $2 \times 3$ null matrix.

Property: $A + O = O + A = A$ (Zero matrix is the additive identity)

8. Upper Triangular Matrix

A square matrix where all elements below the main diagonal are zero.

$$a_{ij} = 0 \text{ when } i > j$$

Example: $U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$

9. Lower Triangular Matrix

A square matrix where all elements above the main diagonal are zero.

$$a_{ij} = 0 \text{ when } i < j$$

Example: $L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$

10. Symmetric Matrix

A square matrix where $A = A^T$ (matrix equals its transpose).

$$a_{ij} = a_{ji} \text{ for all } i, j$$

Example: $S = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$

Notice: Elements are symmetric about the main diagonal.

Visual check: Mirror image across diagonal should be identical.

11. Skew-Symmetric Matrix

A square matrix where $A = -A^T$ (matrix equals negative of its transpose).

$$a_{ij} = -a_{ji} \text{ for all } i, j$$

Important consequence: All diagonal elements must be zero! (Since $a_{ii} = -a_{ii} \Rightarrow a_{ii} = 0$)

Example: $K = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 5 \\ 3 & -5 & 0 \end{bmatrix}$

Memory Trick: Symmetric vs Skew-Symmetric

Symmetric: Like looking in a mirror — same reflection

  • $A = A^T$
  • Elements: $a_{ij} = a_{ji}$
  • Diagonal can be anything

Skew-Symmetric: Like looking in an evil mirror — opposite reflection

  • $A = -A^T$
  • Elements: $a_{ij} = -a_{ji}$
  • Diagonal MUST be zero

Quick test: Check element $(1,2)$ and $(2,1)$:

  • If they’re equal → might be symmetric
  • If they’re negatives → might be skew-symmetric

Equality of Matrices

Two matrices $A$ and $B$ are equal if and only if:

  1. They have the same order ($m \times n$)
  2. All corresponding elements are equal: $a_{ij} = b_{ij}$ for all $i, j$
$$\boxed{A = B \iff [a_{ij}]_{m \times n} = [b_{ij}]_{m \times n}}$$

Example

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$
  • $A = B$ ✓ (same order, same elements)
  • $A \neq C$ ✗ (different order)
Common Mistake
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Left is $1 \times 3$ (row matrix), right is $3 \times 1$ (column matrix).

Even though they have the same numbers, they are NOT equal because orders differ!


Properties Summary

Matrix TypeKey PropertyDiagonal ElementsExample Order
Row1 rowN/A$1 \times n$
Column1 columnN/A$m \times 1$
SquareRows = ColumnsAny values$n \times n$
DiagonalOff-diagonal = 0Any values$n \times n$
ScalarDiagonal all equalAll equal$n \times n$
IdentityDiagonal all 1, rest 0All = 1$n \times n$
NullAll elements = 0All = 0$m \times n$
Upper TriangularBelow diagonal = 0Any values$n \times n$
Lower TriangularAbove diagonal = 0Any values$n \times n$
Symmetric$A = A^T$Any values$n \times n$
Skew-Symmetric$A = -A^T$All = 0$n \times n$

Common Mistakes to Avoid

Trap #1: Order Confusion

Wrong: $A$ is $3 \times 2$ means 3 columns and 2 rows

Right: $A$ is $3 \times 2$ means 3 rows and 2 columns

Remember: “Rows × Columns” (RC Cola!)

Trap #2: Diagonal Matrix Zero Elements

Wrong: All diagonal elements must be non-zero in a diagonal matrix

Right: Diagonal elements can be zero! The requirement is only that off-diagonal elements are zero.

$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is a valid diagonal matrix.

Trap #3: Symmetric Matrix Diagonal

Wrong: Diagonal elements must be zero in symmetric matrices

Right: Only skew-symmetric matrices require zero diagonal. Symmetric matrices can have any diagonal values!

Symmetric: $\begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix}$ ✓

Skew-symmetric: $\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$ ✓ (must have zero diagonal)

Trap #4: Matrix Element Reference

Wrong: For $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $a_{21} = 2$

Right: $a_{21} = 3$ (row 2, column 1)

First subscript is always row, second is always column!


Quick Identification Flowchart

graph TD
    A[Matrix] --> B{Square?}
    B -->|No| C{1 row?}
    B -->|Yes| D{All zeros?}
    C -->|Yes| E[Row Matrix]
    C -->|No| F{1 column?}
    F -->|Yes| G[Column Matrix]
    F -->|No| H[Rectangular Matrix]
    D -->|Yes| I[Null Matrix]
    D -->|No| J{Off-diagonal zeros?}
    J -->|Yes| K{Diagonal all equal?}
    J -->|No| L{A = A^T?}
    K -->|Yes| M{All diagonal = 1?}
    K -->|No| N[Diagonal Matrix]
    M -->|Yes| O[Identity Matrix]
    M -->|No| P[Scalar Matrix]
    L -->|Yes| Q[Symmetric]
    L -->|No| R{A = -A^T?}
    R -->|Yes| S[Skew-Symmetric]
    R -->|No| T[General Square]

Practice Problems

Level 1: Foundation (NCERT)

Problem 1.1

What is the order of matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$?

Solution:

Count rows: 4 Count columns: 3

Answer: $4 \times 3$

Problem 1.2

For $A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$, find $a_{23}$ and $a_{32}$.

Solution:

$a_{23}$ = element in row 2, column 3 = 7

$a_{32}$ = element in row 3, column 2 = 9

Answer: $a_{23} = 7$, $a_{32} = 9$

Problem 1.3

Construct a $2 \times 3$ matrix $A = [a_{ij}]$ where $a_{ij} = i + j$.

Solution:

$a_{11} = 1 + 1 = 2$, $a_{12} = 1 + 2 = 3$, $a_{13} = 1 + 3 = 4$

$a_{21} = 2 + 1 = 3$, $a_{22} = 2 + 2 = 4$, $a_{23} = 2 + 3 = 5$

Answer: $A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$

Level 2: JEE Main

Problem 2.1

If $A = \begin{bmatrix} x+2 & 3 \\ 4 & y-1 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 3 \\ 4 & 2 \end{bmatrix}$, find $x$ and $y$ such that $A = B$.

Solution:

For $A = B$:

  • $x + 2 = 5 \Rightarrow x = 3$
  • $y - 1 = 2 \Rightarrow y = 3$

Answer: $x = 3$, $y = 3$

Problem 2.2

Identify the type of matrix: $A = \begin{bmatrix} 0 & 5 & -3 \\ -5 & 0 & 2 \\ 3 & -2 & 0 \end{bmatrix}$

Solution:

Check if symmetric: $a_{12} = 5$ but $a_{21} = -5$, so $a_{12} \neq a_{21}$. Not symmetric.

Check if skew-symmetric:

  • $a_{12} = 5 = -a_{21} = -(-5)$ ✓
  • $a_{13} = -3 = -a_{31} = -(3)$ ✓
  • $a_{23} = 2 = -a_{32} = -(-2)$ ✓
  • All diagonal elements are 0 ✓

Answer: Skew-symmetric matrix

Problem 2.3

Find the trace of $A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 4 \\ 5 & 2 & 3 \end{bmatrix}$.

Solution:

$\text{tr}(A) = a_{11} + a_{22} + a_{33} = 2 + (-1) + 3 = 4$

Answer: 4

Level 3: JEE Advanced

Problem 3.1

If $A$ is a $3 \times 3$ matrix such that $A = [a_{ij}]$ where $a_{ij} = i^2 - j^2$, determine whether $A$ is symmetric, skew-symmetric, or neither.

Solution:

First, construct the matrix:

  • $a_{11} = 1^2 - 1^2 = 0$, $a_{12} = 1^2 - 2^2 = -3$, $a_{13} = 1^2 - 3^2 = -8$
  • $a_{21} = 2^2 - 1^2 = 3$, $a_{22} = 2^2 - 2^2 = 0$, $a_{23} = 2^2 - 3^2 = -5$
  • $a_{31} = 3^2 - 1^2 = 8$, $a_{32} = 3^2 - 2^2 = 5$, $a_{33} = 3^2 - 3^2 = 0$
$$A = \begin{bmatrix} 0 & -3 & -8 \\ 3 & 0 & -5 \\ 8 & 5 & 0 \end{bmatrix}$$

Check: $a_{12} = -3$ and $a_{21} = 3 = -a_{12}$ ✓

All diagonal elements are 0 ✓

Answer: Skew-symmetric matrix

Problem 3.2

Prove that every square matrix can be uniquely expressed as the sum of a symmetric and a skew-symmetric matrix.

Solution:

Let $A$ be any square matrix. We can write:

$$A = \frac{A + A^T}{2} + \frac{A - A^T}{2}$$

Let $P = \frac{A + A^T}{2}$ and $Q = \frac{A - A^T}{2}$

Check if $P$ is symmetric:

$$P^T = \left(\frac{A + A^T}{2}\right)^T = \frac{A^T + (A^T)^T}{2} = \frac{A^T + A}{2} = P$$

Check if $Q$ is skew-symmetric:

$$Q^T = \left(\frac{A - A^T}{2}\right)^T = \frac{A^T - (A^T)^T}{2} = \frac{A^T - A}{2} = -\frac{A - A^T}{2} = -Q$$

Therefore: $A = P + Q$ where $P$ is symmetric and $Q$ is skew-symmetric.

Uniqueness: Suppose $A = P_1 + Q_1 = P_2 + Q_2$. Then: $P_1 - P_2 = Q_2 - Q_1$

Left side is symmetric, right side is skew-symmetric. The only matrix that is both symmetric and skew-symmetric is the zero matrix.

Therefore: $P_1 = P_2$ and $Q_1 = Q_2$ Proved!


Quick Revision Box

ConceptKey Point
Matrix order$m \times n$ = rows × columns
Element notation$a_{ij}$ = row $i$, column $j$ (RC!)
Square matrix$m = n$
Diagonal matrix$a_{ij} = 0$ for $i \neq j$
Identity matrix$I_n$ has diagonal = 1, rest = 0
Symmetric$A = A^T$ (mirror across diagonal)
Skew-symmetric$A = -A^T$ (diagonal must be 0)
TraceSum of diagonal elements
Matrix equalitySame order + all elements equal

Within Matrices & Determinants Chapter

Math Connections

Real-World Applications

  • Computer Graphics — Transformation matrices for 3D rotations
  • Machine Learning — Neural network weight matrices
  • Cryptography — Encryption using matrix operations
  • Economics — Input-output models using matrices

Teacher’s Summary

Key Takeaways
  1. Matrix order is always rows × columns (remember “RC Cola”)
  2. Element notation $a_{ij}$: first index = row, second = column
  3. Square matrices ($n \times n$) are special — they can have determinants and inverses
  4. Diagonal matrices have zeros off the diagonal; diagonal elements can be anything
  5. Symmetric matrices satisfy $A = A^T$ (mirror property)
  6. Skew-symmetric matrices satisfy $A = -A^T$ and must have zero diagonal
  7. Identity matrix $I$ acts like the number 1 in multiplication
  8. Any square matrix = symmetric part + skew-symmetric part

“Master matrix types — they’re the building blocks for all matrix operations in JEE!”

Exam Strategy: For JEE, quickly identify matrix types by checking:

  1. Is it square? → Check for special types
  2. Compare $a_{ij}$ and $a_{ji}$ → Symmetric or skew-symmetric?
  3. Check diagonal → Diagonal/scalar/identity?

Next: Matrix Algebra →