Minors, Cofactors and Expansion

Master minors, cofactors, cofactor expansion, Laplace expansion theorem, and applications in determinant evaluation for JEE Main & Advanced.

The Hook: The Building Blocks of Determinants

Connect: Like LEGO Blocks Building Complex Structures

Ever built a complex LEGO structure? You start with small blocks and combine them to create something bigger. Minors and cofactors work exactly the same way!

A $3 \times 3$ determinant is built from smaller $2 \times 2$ determinants (minors). A $4 \times 4$ determinant? Built from $3 \times 3$ minors. A $100 \times 100$ determinant? Built recursively from smaller pieces!

This recursive structure is how:

  • Google’s servers compute massive determinants for data analysis
  • CAD software checks if 3D transformations are valid
  • Physics simulations solve complex systems with thousands of equations
  • Machine learning algorithms compute eigenvalues of huge matrices

Why this matters for JEE: Understanding minors and cofactors is essential for:

  • Finding inverse matrices (adjoint method)
  • Solving determinant problems efficiently
  • Understanding Cramer’s rule for linear systems
  • JEE Advanced problems involving symbolic determinants

Prerequisites

Before diving into minors and cofactors, you should be comfortable with:


What is a Minor?

Definition

The minor of an element $a_{ij}$ in a matrix $A$, denoted $M_{ij}$, is the determinant of the submatrix obtained by deleting row $i$ and column $j$.

$$\boxed{M_{ij} = \text{det of submatrix after removing row } i \text{ and column } j}$$

Visual Understanding

For a $3 \times 3$ matrix:

$$A = \begin{bmatrix} \color{red}{a_{11}} & \color{blue}{a_{12}} & a_{13} \\ \color{blue}{a_{21}} & a_{22} & a_{23} \\ \color{blue}{a_{31}} & a_{32} & a_{33} \end{bmatrix}$$

To find $M_{11}$ (minor of $\color{red}{a_{11}}$):

  • Delete row 1 (containing $\color{red}{a_{11}}$)
  • Delete column 1 (containing $\color{red}{a_{11}}$)
  • Find determinant of remaining $2 \times 2$ matrix
$$M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{22}a_{33} - a_{23}a_{32}$$

Example: Finding All Minors of a 3×3 Matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Finding $M_{11}$: Delete row 1, column 1

$$M_{11} = \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = 45 - 48 = -3$$

Finding $M_{12}$: Delete row 1, column 2

$$M_{12} = \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = 36 - 42 = -6$$

Finding $M_{13}$: Delete row 1, column 3

$$M_{13} = \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = 32 - 35 = -3$$

Finding $M_{21}$: Delete row 2, column 1

$$M_{21} = \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} = 18 - 24 = -6$$

Finding $M_{22}$: Delete row 2, column 2

$$M_{22} = \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} = 9 - 21 = -12$$

Finding $M_{23}$: Delete row 2, column 3

$$M_{23} = \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = 8 - 14 = -6$$

Finding $M_{31}$: Delete row 3, column 1

$$M_{31} = \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = 12 - 15 = -3$$

Finding $M_{32}$: Delete row 3, column 2

$$M_{32} = \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 6 - 12 = -6$$

Finding $M_{33}$: Delete row 3, column 3

$$M_{33} = \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = 5 - 8 = -3$$

Matrix of Minors:

$$\begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix} = \begin{bmatrix} -3 & -6 & -3 \\ -6 & -12 & -6 \\ -3 & -6 & -3 \end{bmatrix}$$

What is a Cofactor?

Definition

The cofactor of element $a_{ij}$, denoted $C_{ij}$ or $A_{ij}$, is the minor with an appropriate sign:

$$\boxed{C_{ij} = (-1)^{i+j} \cdot M_{ij}}$$

In words: Cofactor = (sign factor) × (minor)

Sign Pattern

The sign $(-1)^{i+j}$ follows a checkerboard pattern:

$$\begin{bmatrix}

  • & - & + & - & \cdots \
  • & + & - & + & \cdots \
  • & - & + & - & \cdots \
  • & + & - & + & \cdots \ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

For $3 \times 3$ matrix:

$$\begin{bmatrix}

  • & - & + \
  • & + & - \
  • & - & + \end{bmatrix} = \begin{bmatrix} (-1)^{1+1} & (-1)^{1+2} & (-1)^{1+3} \ (-1)^{2+1} & (-1)^{2+2} & (-1)^{2+3} \ (-1)^{3+1} & (-1)^{3+2} & (-1)^{3+3} \end{bmatrix}$$
Memory Trick: Checkerboard Pattern

Position $(1,1)$ is always POSITIVE (+)

Then alternate like a checkerboard:

  • Move right → sign changes
  • Move down → sign changes
  • Move diagonally → sign stays same

Quick check: $i + j$ even → positive, $i + j$ odd → negative

Examples:

  • $(1,1)$: $1+1=2$ (even) → $+$
  • $(1,2)$: $1+2=3$ (odd) → $-$
  • $(2,2)$: $2+2=4$ (even) → $+$

Example: Finding All Cofactors

Using the same matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

We already found minors. Now apply signs:

$$C_{11} = (-1)^{1+1} M_{11} = (+1)(-3) = -3$$ $$C_{12} = (-1)^{1+2} M_{12} = (-1)(-6) = 6$$ $$C_{13} = (-1)^{1+3} M_{13} = (+1)(-3) = -3$$ $$C_{21} = (-1)^{2+1} M_{21} = (-1)(-6) = 6$$ $$C_{22} = (-1)^{2+2} M_{22} = (+1)(-12) = -12$$ $$C_{23} = (-1)^{2+3} M_{23} = (-1)(-6) = 6$$ $$C_{31} = (-1)^{3+1} M_{31} = (+1)(-3) = -3$$ $$C_{32} = (-1)^{3+2} M_{32} = (-1)(-6) = 6$$ $$C_{33} = (-1)^{3+3} M_{33} = (+1)(-3) = -3$$

Cofactor Matrix:

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} = \begin{bmatrix} -3 & 6 & -3 \\ 6 & -12 & 6 \\ -3 & 6 & -3 \end{bmatrix}$$

Cofactor Expansion of Determinants

Expansion Along a Row

The determinant of $A$ can be found by expanding along any row $i$:

$$\boxed{|A| = \sum_{j=1}^{n} a_{ij} \cdot C_{ij}}$$

In words: Sum of (element × its cofactor) for all elements in row $i$

Expansion Along a Column

The determinant of $A$ can be found by expanding along any column $j$:

$$\boxed{|A| = \sum_{i=1}^{n} a_{ij} \cdot C_{ij}}$$

In words: Sum of (element × its cofactor) for all elements in column $j$

Example: Expansion Along Row 1

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Expand along Row 1:

$$|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$ $$C_{11} = (-1)^{1+1} \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = 45 - 48 = -3$$ $$C_{12} = (-1)^{1+2} \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = -(36 - 42) = 6$$ $$C_{13} = (-1)^{1+3} \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = 32 - 35 = -3$$ $$|A| = 2(-3) + 3(6) + 1(-3) = -6 + 18 - 3 = 9$$

Example: Expansion Along Column with Zeros

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 0 & 5 \\ 4 & 7 & 6 \end{bmatrix}$$

Smart choice: Expand along Column 2 (has two zeros!)

$$|A| = a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32}$$ $$= 0 \cdot C_{12} + 0 \cdot C_{22} + 7 \cdot C_{32}$$ $$C_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 3 \\ 2 & 5 \end{vmatrix} = -(5 - 6) = 1$$ $$|A| = 7(1) = 7$$

Only one $2 \times 2$ determinant needed!

JEE Strategy: Smart Expansion

Always expand along the row/column with the MOST ZEROS!

Why? Each zero eliminates one $2 \times 2$ determinant calculation.

Example ranking:

  • Row with 2 zeros → Best (only 1 calculation)
  • Row with 1 zero → Good (2 calculations)
  • Row with 0 zeros → Slowest (3 calculations)

Time saved: Can reduce 3 minutes to 30 seconds on complex problems!


Properties of Minors and Cofactors

Property 1: Sum of Products (Row)

For any row $i$:

$$\sum_{j=1}^{n} a_{ij} C_{ij} = |A|$$

This is the cofactor expansion formula!

Property 2: Sum of Products (Different Row)

For row $i$ and cofactors of different row $k$ (where $i \neq k$):

$$\boxed{\sum_{j=1}^{n} a_{ij} C_{kj} = 0}$$

In words: Sum of (elements of one row) × (cofactors of a different row) = 0

Example:

$$a_{11}C_{21} + a_{12}C_{22} + a_{13}C_{23} = 0$$

This is a crucial property for finding adjoints!

Property 3: Similar Property for Columns

For column $j$ and cofactors of different column $l$ (where $j \neq l$):

$$\sum_{i=1}^{n} a_{ij} C_{il} = 0$$

Applications of Cofactors

1. Finding Determinants

As we’ve seen, cofactor expansion is a systematic way to find determinants of any size.

2. Finding Adjoint (Next Topic)

The adjoint of a matrix is the transpose of the cofactor matrix:

$$\text{adj}(A) = [C_{ij}]^T$$

3. Finding Inverse

The inverse formula uses cofactors:

$$A^{-1} = \frac{1}{|A|} \text{adj}(A) = \frac{1}{|A|} [C_{ij}]^T$$

4. Cramer’s Rule

Solving linear systems uses cofactors and determinants.


Working with Larger Matrices

4×4 Determinant Using Cofactors

For a $4 \times 4$ matrix, each cofactor is a $3 \times 3$ determinant:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

Expand along Row 1:

$$|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + a_{14}C_{14}$$

Where each $C_{1j}$ is $(-1)^{1+j}$ times a $3 \times 3$ determinant.

Computational Complexity

Determinant calculation grows EXPONENTIALLY with size:

  • $2 \times 2$: 2 multiplications
  • $3 \times 3$: 6 multiplications (Sarrus) or 9 (expansion)
  • $4 \times 4$: About 40 multiplications
  • $5 \times 5$: About 200 multiplications
  • $n \times n$: About $n!$ operations (factorial growth!)

For JEE: You’ll rarely see beyond $4 \times 4$, and usually with special structure (zeros, patterns) to make it manageable.

Real-world: Computers use specialized algorithms (LU decomposition, QR factorization) that are much faster than cofactor expansion!


Common Mistakes to Avoid

Trap #1: Forgetting the Sign

Wrong: $C_{ij} = M_{ij}$ (forgetting sign factor)

Right: $C_{ij} = (-1)^{i+j} M_{ij}$

Example: For position $(2,3)$:

  • Minor: $M_{23} = 5$
  • Cofactor: $C_{23} = (-1)^{2+3} \cdot 5 = -5$ (NOT 5!)
Trap #2: Wrong Row/Column Deletion

Wrong: To find $M_{23}$, delete row 2 and column 2

Right: To find $M_{23}$, delete row 2 and column 3

The subscripts $(i,j)$ tell you exactly which row and column to delete!

Trap #3: Sign Pattern Errors

Wrong: Assuming position $(2,2)$ has negative sign

Right: Position $(2,2)$: $(-1)^{2+2} = (-1)^4 = +1$ (POSITIVE!)

Middle element of $3 \times 3$ is always positive, not negative.

Check: $2+2=4$ (even) → positive sign

Trap #4: Mixing Rows in Expansion

Wrong: $|A| = a_{11}C_{11} + a_{22}C_{22} + a_{33}C_{33}$

Right: When expanding, use all elements from ONE row or ONE column!

You can’t mix elements from different rows (unless using special properties).

Correct: $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$ (all from row 1)

Trap #5: Cofactor vs Adjoint Confusion

Wrong: Adjoint = Cofactor matrix

Right: Adjoint = Transpose of cofactor matrix

$$\text{adj}(A) = [C_{ij}]^T$$

The cofactor matrix must be transposed!


Practice Problems

Level 1: Foundation (NCERT)

Problem 1.1

For $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, find $M_{11}$ and $C_{11}$.

Solution:

$M_{11}$ = determinant after deleting row 1, column 1 = just the element $4$

$$M_{11} = 4$$ $$C_{11} = (-1)^{1+1} M_{11} = (+1)(4) = 4$$

Answer: $M_{11} = 4$, $C_{11} = 4$

Problem 1.2

For $A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, find $M_{23}$ and $C_{23}$.

Solution:

Delete row 2, column 3:

$$M_{23} = \begin{vmatrix} 2 & 3 \\ 7 & 8 \end{vmatrix} = 16 - 21 = -5$$ $$C_{23} = (-1)^{2+3} M_{23} = (-1)(-5) = 5$$

Answer: $M_{23} = -5$, $C_{23} = 5$

Problem 1.3

Write the sign pattern for a $4 \times 4$ matrix.

Solution:

$$\begin{bmatrix}

  • & - & + & - \
  • & + & - & + \
  • & - & + & - \
  • & + & - & + \end{bmatrix}$$

Answer: Checkerboard starting with $+$ at $(1,1)$

Level 2: JEE Main

Problem 2.1

Find the determinant by expanding along the best row/column:

$$\begin{vmatrix} 2 & 0 & 0 \\ 3 & 5 & 0 \\ 1 & 7 & 9 \end{vmatrix}$$

Solution:

This is a lower triangular matrix!

For triangular matrices: $|A|$ = product of diagonal elements

$$|A| = 2 \cdot 5 \cdot 9 = 90$$

Alternatively, expand along Row 1 (has two zeros):

$$|A| = 2 \cdot C_{11} + 0 \cdot C_{12} + 0 \cdot C_{13}$$ $$C_{11} = (+1) \begin{vmatrix} 5 & 0 \\ 7 & 9 \end{vmatrix} = 45$$ $$|A| = 2(45) = 90$$

Answer: 90

Problem 2.2

For $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$, find the cofactor matrix.

Solution:

$$C_{11} = (+1) \begin{vmatrix} 4 & 5 \\ 0 & 6 \end{vmatrix} = 24$$ $$C_{12} = (-1) \begin{vmatrix} 0 & 5 \\ 0 & 6 \end{vmatrix} = 0$$ $$C_{13} = (+1) \begin{vmatrix} 0 & 4 \\ 0 & 0 \end{vmatrix} = 0$$ $$C_{21} = (-1) \begin{vmatrix} 2 & 3 \\ 0 & 6 \end{vmatrix} = -12$$ $$C_{22} = (+1) \begin{vmatrix} 1 & 3 \\ 0 & 6 \end{vmatrix} = 6$$ $$C_{23} = (-1) \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} = 0$$ $$C_{31} = (+1) \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -2$$ $$C_{32} = (-1) \begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = -5$$ $$C_{33} = (+1) \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} = 4$$

Answer: $\begin{bmatrix} 24 & 0 & 0 \\ -12 & 6 & 0 \\ -2 & -5 & 4 \end{bmatrix}$

Problem 2.3

Verify that for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$:

$$a_{11}C_{21} + a_{12}C_{22} = 0$$

Solution:

$$C_{21} = (-1)^{2+1} M_{21} = (-1)(2) = -2$$ $$C_{22} = (-1)^{2+2} M_{22} = (+1)(1) = 1$$ $$a_{11}C_{21} + a_{12}C_{22} = 1(-2) + 2(1) = -2 + 2 = 0$$

Verified! (Property: different row cofactors sum to zero)

Level 3: JEE Advanced

Problem 3.1

If $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$, show that the cofactor of each element in the second row equals zero.

Solution:

Notice that Row 3 = Row 1 + Row 2

This means the rows are linearly dependent, so $|A| = 0$.

$$C_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -(10-12) = 2$$

Wait, this is NOT zero! Let me recalculate…

Actually, Row 2 = average of Row 1 and Row 3, so let’s find all cofactors:

$$C_{21} = (-1) \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -(10-12) = 2$$ $$C_{22} = (+1) \begin{vmatrix} 1 & 3 \\ 3 & 5 \end{vmatrix} = 5-9 = -4$$ $$C_{23} = (-1) \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -(4-6) = 2$$

Now verify expansion: $|A| = a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23}$

$$= 2(2) + 3(-4) + 4(2) = 4 - 12 + 8 = 0$$

Individual cofactors are NOT zero, but their expansion gives zero (because $|A| = 0$).

Answer: The cofactor expansion equals zero, not individual cofactors.

Problem 3.2

Find the determinant using cofactor expansion:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{vmatrix}$$

Solution:

This is an upper triangular matrix!

$$|A| = 1 \cdot 5 \cdot 8 \cdot 10 = 400$$

Verification by expansion along Column 1:

$$|A| = 1 \cdot C_{11} = 1 \cdot \begin{vmatrix} 5 & 6 & 7 \\ 0 & 8 & 9 \\ 0 & 0 & 10 \end{vmatrix}$$

The $3 \times 3$ minor is also triangular:

$$= 1 \cdot (5 \cdot 8 \cdot 10) = 400$$

Answer: 400


Quick Revision Box

ConceptFormula/Definition
Minor $M_{ij}$Det after deleting row $i$, column $j$
Cofactor $C_{ij}$$(-1)^{i+j} M_{ij}$
Sign patternCheckerboard: $(i+j)$ even → $+$, odd → $-$
Row expansion$\|A\| = \sum_j a_{ij} C_{ij}$
Column expansion$\|A\| = \sum_i a_{ij} C_{ij}$
Different row$\sum_j a_{ij} C_{kj} = 0$ if $i \neq k$
Best expansionChoose row/column with most zeros
Triangular matrix$\|A\|$ = product of diagonal (fast!)

Within Matrices & Determinants Chapter

Math Connections

Real-World Applications

  • Inverse calculation — Essential for solving systems
  • Cramer’s rule — Direct solution method
  • Eigenvalue problems — Characteristic equation uses cofactors

Teacher’s Summary

Key Takeaways
  1. Minor $M_{ij}$: Determinant after deleting row $i$ and column $j$
  2. Cofactor $C_{ij}$: Minor with sign $(-1)^{i+j}$ (checkerboard pattern)
  3. Sign pattern: Start with $+$ at $(1,1)$, alternate like checkerboard
  4. Determinant expansion: Sum of (element × cofactor) along any row/column
  5. Smart strategy: Expand along row/column with most zeros
  6. Different row property: $\sum a_{ij} C_{kj} = 0$ if $i \neq k$ (crucial for adjoint!)
  7. Triangular matrices: Just multiply diagonal (skip all cofactor work!)
  8. Cofactor matrix: Foundation for adjoint and inverse

“Choose wisely where you expand — one zero can save you 2 minutes of calculation!”

Exam Strategy:

  • Step 1: Check if triangular/diagonal → direct answer
  • Step 2: Find row/column with most zeros
  • Step 3: Expand there using cofactors
  • Step 4: Be careful with signs (checkerboard!)

Next: Adjoint and Inverse →