Arithmetico-Geometric Progression (AGP)

Master AGP - combining AP and GP, sum formulas, and infinite series applications for JEE

Interactive Demo: Visualize AGP

See how arithmetic and geometric progressions combine to form AGP patterns.

Real-Life Hook: The Compound Interest with Installments

You invest ₹1000 in year 1, ₹2000 in year 2, ₹3000 in year 3, and so on (arithmetic increase). But each investment grows at 10% per year (geometric growth). How much total wealth do you have after many years?

This creates a sequence where:

  • Year 1 contribution grows: $1000 \times (1.1)^{n-1}$
  • Year 2 contribution grows: $2000 \times (1.1)^{n-2}$
  • Year 3 contribution grows: $3000 \times (1.1)^{n-3}$

This is an Arithmetico-Geometric Progression - where arithmetic and geometric patterns combine!

Understanding AGP is crucial for financial mathematics, probability distributions, and complex JEE problems!


What is an AGP?

An Arithmetico-Geometric Progression (AGP) is a sequence where each term is the product of corresponding terms from an AP and a GP.

General Form:

If AP is: $a, a+d, a+2d, a+3d, \ldots$

And GP is: $1, r, r^2, r^3, \ldots$

Then AGP is: $a, (a+d)r, (a+2d)r^2, (a+3d)r^3, \ldots$

Standard Form:

$$\boxed{a, (a+d)r, (a+2d)r^2, (a+3d)r^3, \ldots, [a+(n-1)d]r^{n-1}}$$

Example: $1, 4x, 7x^2, 10x^3, 13x^4, \ldots$

Here: AP is $1, 4, 7, 10, 13, \ldots$ (with $a=1, d=3$)

GP is $1, x, x^2, x^3, x^4, \ldots$ (with ratio $r=x$)


nth Term of AGP

The $n$th term of AGP is:

$$\boxed{T_n = [a + (n-1)d] \cdot r^{n-1}}$$

Structure:

  • AP part: $a + (n-1)d$
  • GP part: $r^{n-1}$
  • AGP term: Their product!

Memory Trick:AP Times GP Power” → $[a+(n-1)d] \times r^{n-1}$


Sum of n Terms of AGP

This is the KEY FORMULA for JEE!

For AGP: $a, (a+d)r, (a+2d)r^2, \ldots$

$$\boxed{S_n = \frac{a}{1-r} + \frac{dr[1-r^{n-1}]}{(1-r)^2} - \frac{[a+(n-1)d]r^n}{1-r}}$$

Alternative Form (cleaner for memory):

When $r \neq 1$:

$$\boxed{S_n = \frac{a - [a+(n-1)d]r^n}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2}}$$

When $r = 1$: AGP becomes AP!

$$S_n = na + \frac{n(n-1)d}{2}$$

Derivation Method: Multiply sum by $r$ and subtract (see below)


Derivation of Sum Formula

Method: Multiply by r and Subtract

$$S_n = a + (a+d)r + (a+2d)r^2 + \cdots + [a+(n-1)d]r^{n-1}$$

Multiply by $r$:

$$rS_n = ar + (a+d)r^2 + (a+2d)r^3 + \cdots + [a+(n-1)d]r^n$$

Subtract:

$$S_n - rS_n = a + dr + dr^2 + dr^3 + \cdots + dr^{n-1} - [a+(n-1)d]r^n$$ $$S_n(1-r) = a + dr(1 + r + r^2 + \cdots + r^{n-2}) - [a+(n-1)d]r^n$$

The part $(1 + r + r^2 + \cdots + r^{n-2})$ is a GP sum with $(n-1)$ terms:

$$= \frac{1-r^{n-1}}{1-r}$$

So:

$$S_n(1-r) = a + dr \cdot \frac{1-r^{n-1}}{1-r} - [a+(n-1)d]r^n$$ $$S_n = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d]r^n}{1-r}$$

Sum of Infinite AGP

When $|r| < 1$, the infinite sum exists:

$$\boxed{S_\infty = \frac{a}{1-r} + \frac{dr}{(1-r)^2}}$$

Derivation:

As $n \to \infty$ and $|r| < 1$:

  • $r^{n-1} \to 0$
  • $r^n \to 0$

From finite sum formula:

$$S_\infty = \frac{a}{1-r} + \frac{dr(1-0)}{(1-r)^2} - \frac{[a+\infty \cdot d] \cdot 0}{1-r}$$ $$= \frac{a}{1-r} + \frac{dr}{(1-r)^2}$$

Simplified:

$$\boxed{S_\infty = \frac{a(1-r) + dr}{(1-r)^2} = \frac{a - ar + dr}{(1-r)^2} = \frac{a + r(d-a)}{(1-r)^2}}$$

Memory Trick:A plus D-A times R, all over (1-R) squared


Special Cases

Case 1: $a = 1, d = 1$

AGP: $1, 2r, 3r^2, 4r^3, \ldots$

$$\boxed{S_n = 1 + 2r + 3r^2 + 4r^3 + \cdots + nr^{n-1}}$$

Infinite sum when $|r| < 1$:

$$\boxed{S_\infty = \frac{1}{(1-r)^2}}$$

This is a super important formula for JEE!


Case 2: $a = d$

AGP: $a, 2ar, 3ar^2, 4ar^3, \ldots$

$$S_\infty = \frac{a}{(1-r)^2}$$

Common Mistakes & How to Avoid Them

❌ Mistake 1: Wrong nth Term

Wrong: $T_n = ar^{n-1} + (n-1)d$ ✗ (addition instead of multiplication!)

Correct: $T_n = [a + (n-1)d] \cdot r^{n-1}$ ✓

Key: It’s a product, not sum!


❌ Mistake 2: Infinite Sum Convergence

Wrong: $S_\infty = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$ for any $r$ ✗

Correct: Only when $|r| < 1$ ✓

Example: For $r = 2$, the series $1 + 4 + 12 + 32 + \cdots$ diverges!


❌ Mistake 3: Formula Confusion

Problem: Find sum of $1 + 3x + 5x^2 + 7x^3 + \cdots$ to $n$ terms

Wrong: Using GP formula ✗

Correct: This is AGP with $a = 1, d = 2, r = x$

Use AGP sum formula! ✓


❌ Mistake 4: Sign in $(1-r)$

Problem: Sum $1 - 2x + 3x^2 - 4x^3 + \cdots$

Wrong: Using $r = x$ ✗

Correct: Here $r = -x$ (negative!)

$$S_\infty = \frac{1}{[1-(-x)]^2} = \frac{1}{(1+x)^2}$$

Problem-Solving Strategies

Strategy 1: Identify AP and GP Components

Problem: Find the 5th term of AGP: $2, 6x, 12x^2, 20x^3, \ldots$

Solution:

Identify pattern:

  • Coefficients: $2, 6, 12, 20, \ldots$
    • Check differences: $6-2=4$, $12-6=6$, $20-12=8$ (not AP!)
    • Check if product pattern: $2 = 2 \times 1$, $6 = 3 \times 2$, $12 = 4 \times 3$, $20 = 5 \times 4$
    • Pattern: $n(n+1)$

So $T_n = n(n+1) \cdot x^{n-1}$

$T_5 = 5 \times 6 \times x^4 = 30x^4$

Answer: $30x^4$


Strategy 2: Sum Using Standard Formula

Problem: Find sum of first 5 terms: $1 + 3x + 5x^2 + 7x^3 + 9x^4$

Solution:

This is AGP with:

  • $a = 1$ (first term of AP)
  • $d = 2$ (common difference of AP)
  • $r = x$ (common ratio)
  • $n = 5$

Using formula:

$$S_5 = \frac{1 - [1+4(2)]x^5}{1-x} + \frac{2x(1-x^4)}{(1-x)^2}$$ $$= \frac{1 - 9x^5}{1-x} + \frac{2x(1-x^4)}{(1-x)^2}$$

For numerical answer, we’d need value of $x$.

Answer: $S_5 = \frac{1 - 9x^5}{1-x} + \frac{2x(1-x^4)}{(1-x)^2}$


Strategy 3: Infinite Sum Application

Problem: Find $1 + 2 \times \frac{1}{3} + 3 \times \frac{1}{9} + 4 \times \frac{1}{27} + \cdots$

Solution:

This is AGP with $a = 1, d = 1, r = \frac{1}{3}$

Check convergence: $|r| = \frac{1}{3} < 1$ ✓

$$S_\infty = \frac{1}{(1-\frac{1}{3})^2} = \frac{1}{(\frac{2}{3})^2} = \frac{1}{\frac{4}{9}} = \frac{9}{4}$$

Answer: $\frac{9}{4}$


Strategy 4: Multiply and Subtract Method

Problem: Find sum: $S = 1 + 3x + 5x^2 + 7x^3 + \cdots$ (infinite, $|x| < 1$)

Solution:

$S = 1 + 3x + 5x^2 + 7x^3 + 9x^4 + \cdots$

$xS = x + 3x^2 + 5x^3 + 7x^4 + \cdots$

Subtract:

$S - xS = 1 + 2x + 2x^2 + 2x^3 + 2x^4 + \cdots$

$S(1-x) = 1 + 2x(1 + x + x^2 + \cdots)$

$S(1-x) = 1 + 2x \cdot \frac{1}{1-x}$

$S(1-x) = 1 + \frac{2x}{1-x}$

$S(1-x) = \frac{1-x+2x}{1-x} = \frac{1+x}{1-x}$

$S = \frac{1+x}{(1-x)^2}$

Verify: Using formula with $a=1, d=2, r=x$:

$S_\infty = \frac{1 + x(2-1)}{(1-x)^2} = \frac{1+x}{(1-x)^2}$ ✓

Answer: $\frac{1+x}{(1-x)^2}$


Practice Problems

Level 1: JEE Main Basics

Problem 1: Find the 6th term of AGP: $3, 6r, 9r^2, 12r^3, \ldots$

Solution

Identify: $a = 3, d = 3, r = r$

$T_6 = [3 + 5(3)] \cdot r^5 = 18r^5$

Answer: $18r^5$


Problem 2: Find sum: $1 + 2 \times \frac{1}{2} + 3 \times \frac{1}{4} + 4 \times \frac{1}{8} + \cdots$ (infinite)

Solution

AGP with $a = 1, d = 1, r = \frac{1}{2}$

$|r| = \frac{1}{2} < 1$ ✓

$S_\infty = \frac{1}{(1-\frac{1}{2})^2} = \frac{1}{(\frac{1}{2})^2} = \frac{1}{\frac{1}{4}} = 4$

Answer: 4


Problem 3: Is $2, 6, 18, 54, \ldots$ an AGP?

Solution

Check ratios: $\frac{6}{2} = 3$, $\frac{18}{6} = 3$, $\frac{54}{18} = 3$

This is a GP, not AGP! (constant ratio, not increasing/decreasing coefficients)

Answer: No, it’s a GP


Level 2: JEE Main/Advanced

Problem 4: Find the sum of first 4 terms of AGP: $1, 4x, 7x^2, 10x^3, \ldots$

Solution

$a = 1, d = 3, r = x, n = 4$

Method 1: Direct calculation $S_4 = 1 + 4x + 7x^2 + 10x^3$

Method 2: Using formula

$$S_4 = \frac{1 - [1+3(3)]x^4}{1-x} + \frac{3x(1-x^3)}{(1-x)^2}$$ $$= \frac{1 - 10x^4}{1-x} + \frac{3x(1-x^3)}{(1-x)^2}$$

For specific $x$, we can evaluate. Generally, answer is as above.

Answer: $1 + 4x + 7x^2 + 10x^3$ or formula form


Problem 5: If $1 + 3x + 5x^2 + 7x^3 + \cdots = \frac{9}{4}$ (infinite series), find $x$.

Solution

AGP: $a = 1, d = 2, r = x$

$S_\infty = \frac{1 + x(2-1)}{(1-x)^2} = \frac{1+x}{(1-x)^2} = \frac{9}{4}$

$4(1+x) = 9(1-x)^2$

$4 + 4x = 9(1 - 2x + x^2)$

$4 + 4x = 9 - 18x + 9x^2$

$9x^2 - 22x + 5 = 0$

Using quadratic formula:

$x = \frac{22 \pm \sqrt{484 - 180}}{18} = \frac{22 \pm \sqrt{304}}{18} = \frac{22 \pm 4\sqrt{19}}{18} = \frac{11 \pm 2\sqrt{19}}{9}$

Check convergence: We need $|x| < 1$

$x_1 = \frac{11 + 2\sqrt{19}}{9} \approx \frac{11 + 8.72}{9} \approx 2.19 > 1$ ✗

$x_2 = \frac{11 - 2\sqrt{19}}{9} \approx \frac{11 - 8.72}{9} \approx 0.25 < 1$ ✓

Answer: $x = \frac{11 - 2\sqrt{19}}{9}$


Problem 6: Find sum: $1 - 3x + 5x^2 - 7x^3 + \cdots$ where $|x| < 1$

Solution

This is AGP with alternating signs: $r = -x$

$a = 1, d = 2, r = -x$

$S_\infty = \frac{1 + (-x)(2-1)}{(1-(-x))^2} = \frac{1-x}{(1+x)^2}$

Answer: $\frac{1-x}{(1+x)^2}$


Level 3: JEE Advanced

Problem 7: Prove that $\sum_{k=1}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$ for $|x| < 1$.

Solution

Method 1: Recognize as derivative

We know: $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ for $|x| < 1$

Differentiate both sides with respect to $x$:

$\sum_{k=1}^{\infty} kx^{k-1} = \frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{0 \cdot (1-x) - 1 \cdot (-1)}{(1-x)^2} = \frac{1}{(1-x)^2}$ ✓

Method 2: AGP approach

$S = 1 + 2x + 3x^2 + 4x^3 + \cdots$

This is AGP with $a = 1, d = 1, r = x$

$S_\infty = \frac{1}{(1-x)^2}$ ✓

Answer: Proven


Problem 8: Find $\sum_{k=1}^{n} k(k+1)x^k$ in closed form.

Solution

Expand: $k(k+1) = k^2 + k$

$\sum k(k+1)x^k = \sum k^2 x^k + \sum kx^k$

We know:

  • $\sum_{k=1}^{\infty} kx^k = \frac{x}{(1-x)^2}$ (multiply standard AGP by $x$)

For $\sum k^2 x^k$, we can derive by differentiating $\sum kx^k$:

$\sum kx^k = \frac{x}{(1-x)^2}$

Differentiate: $\sum k^2x^{k-1} = \frac{d}{dx}\left(\frac{x}{(1-x)^2}\right)$

$= \frac{(1-x)^2 - x \cdot 2(1-x)(-1)}{(1-x)^4}$

$= \frac{(1-x)^2 + 2x(1-x)}{(1-x)^4}$

$= \frac{(1-x)(1-x+2x)}{(1-x)^4}$

$= \frac{1+x}{(1-x)^3}$

So: $\sum k^2 x^k = x \cdot \frac{1+x}{(1-x)^3} = \frac{x(1+x)}{(1-x)^3}$

Therefore:

$\sum k(k+1)x^k = \frac{x(1+x)}{(1-x)^3} + \frac{x}{(1-x)^2}$

$= \frac{x(1+x) + x(1-x)}{(1-x)^3}$

$= \frac{x(1+x+1-x)}{(1-x)^3}$

$= \frac{2x}{(1-x)^3}$

For finite sum to $n$ terms, this gets complex. The infinite case is cleaner.

Answer (infinite): $\frac{2x}{(1-x)^3}$ for $|x| < 1$


Important Results to Remember

1. Basic AGP Infinite Sum

$$\boxed{1 + 2x + 3x^2 + 4x^3 + \cdots = \frac{1}{(1-x)^2} \text{ for } |x| < 1}$$

2. Shifted AGP

$$\boxed{x + 2x^2 + 3x^3 + 4x^4 + \cdots = \frac{x}{(1-x)^2} \text{ for } |x| < 1}$$

3. Sum of Squares AGP

$$\boxed{1 + 4x + 9x^2 + 16x^3 + \cdots = \frac{1+x}{(1-x)^3} \text{ for } |x| < 1}$$

4. General AGP

$$\boxed{a + (a+d)r + (a+2d)r^2 + \cdots = \frac{a + r(d-a)}{(1-r)^2} \text{ for } |r| < 1}$$

Wait, let me recalculate this using the standard formula:

$S_\infty = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$

$= \frac{a(1-r) + dr}{(1-r)^2}$

$= \frac{a - ar + dr}{(1-r)^2}$

$= \frac{a + r(d-a)}{(1-r)^2}$ ✓


Cross-Topic Connections

The formula $\sum kx^{k-1} = \frac{1}{(1-x)^2}$ is actually the derivative of $\sum x^k = \frac{1}{1-x}$!

This connects series summation to differentiation.

Expected value calculations in geometric distributions often involve AGP.

AGP generalizes infinite GP by adding linear growth to exponential decay. See Infinite GP.

Differentiation of binomial series $(1+x)^n$ produces AGP-like patterns. See Binomial Theorem.


Quick Revision Checklist

  • AGP = (AP term) × (GP term): $[a+(n-1)d] \cdot r^{n-1}$
  • Infinite sum: $S_\infty = \frac{a + r(d-a)}{(1-r)^2}$ when $|r| < 1$
  • Standard: $1 + 2x + 3x^2 + \cdots = \frac{1}{(1-x)^2}$
  • Multiply and subtract method works well
  • Always check $|r| < 1$ for infinite sums
  • Watch for alternating signs (negative $r$)
  • Connection to derivatives of power series

Memory Palace Technique

Imagine a factory assembly line (AGP):

  1. Workers (AP): Workers numbered $1, 2, 3, 4, \ldots$ (arithmetic)
  2. Productivity (GP): Each works at efficiency $1, r, r^2, r^3, \ldots$ (geometric)
  3. Output (AGP): Total output = worker number × efficiency: $1 \cdot 1, 2 \cdot r, 3 \cdot r^2, \ldots$
  4. Total Production: $\frac{1}{(1-r)^2}$ when efficiency ratio $r < 1$ (diminishing returns!)
  5. Formula Board: Shows $\frac{a + r(d-a)}{(1-r)^2}$ for general case

Final Tips for JEE

  1. Recognize pattern - increasing/decreasing coefficients with powers
  2. Check convergence - $|r| < 1$ mandatory for infinite sums
  3. Use multiply-subtract - often simpler than direct formula
  4. Remember $\frac{1}{(1-x)^2}$ - most common AGP result
  5. Connect to derivatives - $\sum kx^{k-1}$ is derivative of $\sum x^k$
  6. Watch alternating signs - indicates negative $r$
  7. Verify with small terms - calculate first few terms to check pattern
  8. Finite sum is complex - prefer infinite sum problems when possible

Last Updated: October 31, 2025