Method of Differences and V_n Method

Master the Method of Differences and V_n method for summing complex series in JEE problems

Interactive Demo: Visualize Telescoping Series

See how terms cancel in a telescoping series using the method of differences.

Real-Life Hook: The Collapsing Tower

Imagine building a tower where each block cancels out part of the previous one. You have blocks labeled:

  • Block 1: +10 -5
  • Block 2: +5 -2
  • Block 3: +2 -1
  • Block 4: +1 -0.5

When you stack them, the -5 from Block 1 cancels with +5 from Block 2, the -2 from Block 2 cancels with +2 from Block 3, and so on!

Final result: Only +10 from first block and -0.5 from last block remain = 9.5

This is the Method of Differences - a powerful telescoping technique that makes seemingly impossible summations trivial!


What is the Method of Differences?

The Method of Differences (also called Telescoping Series) is used when the general term of a series can be expressed as:

$$T_n = f(n+1) - f(n)$$

When we sum such terms, most terms cancel out, leaving only the first and last terms!

$$S_n = \sum_{k=1}^{n} T_k = \sum_{k=1}^{n} [f(k+1) - f(k)]$$

Expanding:

$$S_n = [f(2) - f(1)] + [f(3) - f(2)] + [f(4) - f(3)] + \cdots + [f(n+1) - f(n)]$$

After cancellation:

$$\boxed{S_n = f(n+1) - f(1)}$$

Key Insight: Find function $f$ such that $T_n = f(n+1) - f(n)$!


Core Technique: Finding the Difference Function

Strategy: Use Partial Fractions

Many series can be expressed as differences using partial fractions.

Example 1: $T_n = \frac{1}{n(n+1)}$

Using partial fractions:

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

So $f(n) = \frac{1}{n}$ and:

$$S_n = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = \frac{1}{1} - \frac{1}{n+1} = \frac{n}{n+1}$$

Example 2: $T_n = \frac{1}{n(n+1)(n+2)}$

Using partial fractions:

$$\frac{1}{n(n+1)(n+2)} = \frac{1}{2}\left[\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)}\right]$$

So $f(n) = \frac{1}{2n(n+1)}$ and:

$$S_n = \frac{1}{2}\left[\frac{1}{1 \times 2} - \frac{1}{(n+1)(n+2)}\right] = \frac{1}{4} - \frac{1}{2(n+1)(n+2)}$$

Standard Forms

Form 1: $\sum \frac{1}{n(n+1)}$

$$\boxed{\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}}$$

Partial Fraction: $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$


Form 2: $\sum \frac{1}{n(n+2)}$

$$\boxed{\sum_{k=1}^{n} \frac{1}{k(k+2)} = \frac{3}{4} - \frac{2n+3}{2(n+1)(n+2)}}$$

Partial Fraction: $\frac{1}{k(k+2)} = \frac{1}{2}\left(\frac{1}{k} - \frac{1}{k+2}\right)$

Telescoping (with gap of 2):

$$S_n = \frac{1}{2}\left[\left(\frac{1}{1} + \frac{1}{2}\right) - \left(\frac{1}{n+1} + \frac{1}{n+2}\right)\right]$$

Form 3: $\sum \frac{1}{n(n+1)(n+2)}$

$$\boxed{\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{1}{4} - \frac{1}{2(n+1)(n+2)}}$$

Partial Fraction: $\frac{1}{k(k+1)(k+2)} = \frac{1}{2}\left[\frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)}\right]$


Form 4: $\sum \frac{1}{\sqrt{n} + \sqrt{n+1}}$

$$\boxed{\sum_{k=1}^{n} \frac{1}{\sqrt{k} + \sqrt{k+1}} = \sqrt{n+1} - 1}$$

Rationalization:

$$\frac{1}{\sqrt{k} + \sqrt{k+1}} = \frac{\sqrt{k+1} - \sqrt{k}}{(\sqrt{k+1} - \sqrt{k})(\sqrt{k+1} + \sqrt{k})} = \sqrt{k+1} - \sqrt{k}$$

Form 5: $\sum n \cdot n!$

$$\boxed{\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1}$$

Recognition: $k \cdot k! = (k+1)! - k! = (k+1-1) \cdot k! = (k+1)! - k!$


The V_n Method

The V_n method is a variant used when:

$$T_n = V_{n+1} - V_n$$

where $V_n$ is some function of $n$.

Process:

  1. Identify or construct $V_n$ such that $T_n = V_{n+1} - V_n$
  2. Sum: $S_n = V_{n+1} - V_1$

When to Use: When the general term involves factorials, products, or complex recursions.


Common Mistakes & How to Avoid Them

❌ Mistake 1: Incorrect Cancellation

Wrong: Assuming all terms cancel completely ✗

Correct: First few and last few terms remain! ✓

Example: $\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+2}\right)$

Wrong: Everything cancels to 0 ✗

Correct:

$$S_n = \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \cdots$$

Only $\frac{1}{1}$ and $\frac{1}{2}$ don’t cancel from the start, and $\frac{1}{n+1}, \frac{1}{n+2}$ don’t cancel from the end!

$$S_n = \frac{1}{1} + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} = \frac{3}{2} - \frac{2n+3}{(n+1)(n+2)}$$

❌ Mistake 2: Partial Fraction Errors

Wrong: $\frac{1}{n(n+1)} = \frac{1}{n} + \frac{1}{n+1}$ ✗

Correct: $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ ✓ (subtraction, not addition!)

Verification: $\frac{1}{n} - \frac{1}{n+1} = \frac{n+1-n}{n(n+1)} = \frac{1}{n(n+1)}$ ✓


❌ Mistake 3: Forgetting Initial/Final Terms

Problem: Find $\sum_{k=1}^{100} (k+1)! - k!$

Wrong: $S = 101! - 1!$ ✗ (using $f(101) - f(1)$ incorrectly)

Correct:

$$T_k = (k+1)! - k!$$

Here already in difference form with $f(k) = k!$

$$S = \sum [f(k+1) - f(k)] = f(101) - f(1) = 101! - 1!$$

Actually that’s correct! So no mistake here. Let me find a real mistake:

Wrong: $S = 101!$ ✗ (forgetting to subtract $1!$)

Correct: $S = 101! - 1 = 101! - 1$ ✓


Problem-Solving Strategies

Strategy 1: Recognize Partial Fractions

Problem: Find $\sum_{k=1}^{n} \frac{2}{(2k-1)(2k+1)}$

Solution:

Partial fractions:

$$\frac{2}{(2k-1)(2k+1)} = \frac{A}{2k-1} + \frac{B}{2k+1}$$ $$2 = A(2k+1) + B(2k-1)$$

Setting $k = \frac{1}{2}$: $2 = 2A$ → $A = 1$

Setting $k = -\frac{1}{2}$: $2 = -2B$ → $B = -1$

$$\frac{2}{(2k-1)(2k+1)} = \frac{1}{2k-1} - \frac{1}{2k+1}$$

Telescoping:

$$S_n = \sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{2k+1}\right)$$ $$= \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \cdots + \left(\frac{1}{2n-1} - \frac{1}{2n+1}\right)$$ $$= 1 - \frac{1}{2n+1} = \frac{2n}{2n+1}$$

Answer: $\frac{2n}{2n+1}$


Strategy 2: Rationalization

Problem: Find $\sum_{k=1}^{50} \frac{1}{\sqrt{k+1} + \sqrt{k}}$

Solution:

Rationalize:

$$\frac{1}{\sqrt{k+1} + \sqrt{k}} \times \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}} = \frac{\sqrt{k+1} - \sqrt{k}}{(k+1) - k} = \sqrt{k+1} - \sqrt{k}$$

Telescoping:

$$S_{50} = \sum_{k=1}^{50} (\sqrt{k+1} - \sqrt{k})$$ $$= (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + \cdots + (\sqrt{51} - \sqrt{50})$$ $$= \sqrt{51} - 1$$

Answer: $\sqrt{51} - 1$


Strategy 3: Factorial Recognition

Problem: Find $\sum_{k=1}^{n} k \cdot k!$

Solution:

Recognize: $k \cdot k! = (k+1-1) \cdot k! = (k+1) \cdot k! - k! = (k+1)! - k!$

Telescoping:

$$S_n = \sum_{k=1}^{n} [(k+1)! - k!]$$ $$= [2! - 1!] + [3! - 2!] + [4! - 3!] + \cdots + [(n+1)! - n!]$$ $$= (n+1)! - 1!$$ $$= (n+1)! - 1$$

Answer: $(n+1)! - 1$


Strategy 4: Three-Term Partial Fractions

Problem: Find $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$

Solution:

Partial fractions (method: decompose into two two-term fractions):

$$\frac{1}{k(k+1)(k+2)} = \frac{1}{2} \cdot \frac{2}{k(k+1)(k+2)}$$ $$= \frac{1}{2} \cdot \frac{(k+2) - k}{k(k+1)(k+2)}$$ $$= \frac{1}{2}\left[\frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)}\right]$$

Telescoping:

$$S_n = \frac{1}{2}\left[\frac{1}{1 \times 2} - \frac{1}{(n+1)(n+2)}\right]$$ $$= \frac{1}{2}\left[\frac{1}{2} - \frac{1}{(n+1)(n+2)}\right]$$ $$= \frac{1}{4} - \frac{1}{2(n+1)(n+2)}$$

Answer: $\frac{1}{4} - \frac{1}{2(n+1)(n+2)}$


Practice Problems

Level 1: JEE Main Basics

Problem 1: Find $\sum_{k=1}^{10} \frac{1}{k(k+1)}$

Solution

$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$

$S_{10} = \sum_{k=1}^{10} \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{11} = \frac{10}{11}$

Answer: $\frac{10}{11}$


Problem 2: Find $\sum_{k=1}^{n} (\sqrt{k+1} - \sqrt{k})$

Solution

This is already in telescoping form:

$S_n = (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + \cdots + (\sqrt{n+1} - \sqrt{n})$

$= \sqrt{n+1} - 1$

Answer: $\sqrt{n+1} - 1$


Problem 3: Find $\sum_{k=1}^{5} \frac{1}{\sqrt{k} + \sqrt{k+1}}$

Solution

Rationalize: $\frac{1}{\sqrt{k} + \sqrt{k+1}} = \sqrt{k+1} - \sqrt{k}$

$S_5 = \sum_{k=1}^{5} (\sqrt{k+1} - \sqrt{k}) = \sqrt{6} - 1$

Answer: $\sqrt{6} - 1$


Level 2: JEE Main/Advanced

Problem 4: Find $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)}$

Solution

Partial fractions:

$$\frac{1}{(2k-1)(2k+1)} = \frac{1}{2}\left(\frac{1}{2k-1} - \frac{1}{2k+1}\right)$$

$S_n = \frac{1}{2}\sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{2k+1}\right)$

$= \frac{1}{2}\left(1 - \frac{1}{2n+1}\right)$

$= \frac{1}{2} \cdot \frac{2n}{2n+1}$

$= \frac{n}{2n+1}$

Answer: $\frac{n}{2n+1}$


Problem 5: Find $\sum_{k=2}^{n} \frac{1}{k^2-1}$

Solution

Note: $k^2 - 1 = (k-1)(k+1)$

Partial fractions:

$$\frac{1}{(k-1)(k+1)} = \frac{1}{2}\left(\frac{1}{k-1} - \frac{1}{k+1}\right)$$

$S = \frac{1}{2}\sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k+1}\right)$

This telescopes with a gap of 2:

$= \frac{1}{2}\left[\left(\frac{1}{1} + \frac{1}{2}\right) - \left(\frac{1}{n} + \frac{1}{n+1}\right)\right]$

$= \frac{1}{2}\left[\frac{3}{2} - \frac{2n+1}{n(n+1)}\right]$

$= \frac{3}{4} - \frac{2n+1}{2n(n+1)}$

Answer: $\frac{3}{4} - \frac{2n+1}{2n(n+1)}$


Problem 6: Find $\sum_{k=1}^{n} k(k+1)$

Solution

Method 1: Expand and use standard formulas

$k(k+1) = k^2 + k$

$\sum k(k+1) = \sum k^2 + \sum k = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$

$= \frac{n(n+1)}{6}[2n+1+3] = \frac{n(n+1)(2n+4)}{6} = \frac{n(n+1)(n+2)}{3}$

Method 2: Recognize as difference

$k(k+1) = \frac{(k+2)(k+1)k - (k+1)k(k-1)}{3}$… (complex!)

Method 1 is simpler for this case.

Answer: $\frac{n(n+1)(n+2)}{3}$


Level 3: JEE Advanced

Problem 7: Find $\sum_{k=1}^{n} \frac{k}{(k+1)!}$

Solution

Recognize: $\frac{k}{(k+1)!} = \frac{(k+1)-1}{(k+1)!} = \frac{1}{k!} - \frac{1}{(k+1)!}$

Telescoping: $S_n = \sum_{k=1}^{n} \left(\frac{1}{k!} - \frac{1}{(k+1)!}\right)$

$= \frac{1}{1!} - \frac{1}{(n+1)!}$

$= 1 - \frac{1}{(n+1)!}$

Answer: $1 - \frac{1}{(n+1)!}$


Problem 8: Find $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)(k+3)}$

Solution

Partial fractions (using the trick of writing as difference of products):

$$\frac{1}{k(k+1)(k+2)(k+3)} = \frac{1}{3}\left[\frac{1}{k(k+1)(k+2)} - \frac{1}{(k+1)(k+2)(k+3)}\right]$$

This telescopes!

$S_n = \frac{1}{3}\left[\frac{1}{1 \times 2 \times 3} - \frac{1}{(n+1)(n+2)(n+3)}\right]$

$= \frac{1}{3}\left[\frac{1}{6} - \frac{1}{(n+1)(n+2)(n+3)}\right]$

$= \frac{1}{18} - \frac{1}{3(n+1)(n+2)(n+3)}$

Answer: $\frac{1}{18} - \frac{1}{3(n+1)(n+2)(n+3)}$


Advanced Techniques

Technique 1: Creating Differences

Sometimes you need to create a difference by adding and subtracting terms.

Example: Sum $\sum k^2$

Recognize: $(k+1)^3 - k^3 = 3k^2 + 3k + 1$

Rearrange: $k^2 = \frac{1}{3}[(k+1)^3 - k^3 - 3k - 1]$

Then telescoping gives the standard formula.


Technique 2: Double Telescoping

Some series telescope in multiple ways simultaneously.

Example: $\sum \frac{1}{k^2(k+1)^2}$

Can be written as: $\left(\frac{1}{k} - \frac{1}{k+1}\right)^2 + \frac{1}{k(k+1)} - \frac{1}{(k)(k+1)}$… (complex!)


Cross-Topic Connections

Essential algebra technique from rational expressions. See [Algebra - Partial Fractions].

As $n \to \infty$, many telescoping series converge:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)} = \lim_{n \to \infty} \frac{n}{n+1} = 1$$

See Limits.

Telescoping sums are discrete analogs of the Fundamental Theorem of Calculus:

$$\sum_{k=a}^{b} [f(k+1) - f(k)] = f(b+1) - f(a)$$ $$\int_a^b f'(x) \, dx = f(b) - f(a)$$

Quick Revision Checklist

  • Recognize telescoping: $T_n = f(n+1) - f(n)$
  • Sum = $f(n+1) - f(1)$ (last minus first!)
  • Partial fractions: $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$
  • Rationalization: $\frac{1}{\sqrt{k+1} + \sqrt{k}} = \sqrt{k+1} - \sqrt{k}$
  • Factorial form: $k \cdot k! = (k+1)! - k!$
  • Watch for gap cancellation (e.g., $\frac{1}{k} - \frac{1}{k+2}$)
  • Verify with first few terms to catch errors

Memory Palace Technique

Imagine a domino chain (telescoping):

  1. Setup (Recognize): Arrange dominoes as differences $f(k+1) - f(k)$
  2. Knock First (Start sum): First domino falls: $f(2) - f(1)$
  3. Cascade (Middle cancels): Middle dominoes knock each other: $-f(2) + f(2)$ cancels!
  4. Last Standing (Final result): Only first piece of first domino and last piece of last domino remain: $f(n+1) - f(1)$

Final Tips for JEE

  1. Master partial fractions - 90% of telescoping problems use this!
  2. Look for $(k+1) - k$ patterns - sign of telescoping
  3. Write out first 3-4 terms - visualize the cancellation
  4. Don’t forget $- f(1)$ - common error to only write $f(n+1)$
  5. Rationalization for surds - multiply by conjugate
  6. Factorial manipulation - $k \cdot k! = (k+1)! - k!$
  7. Gap telescoping - some series cancel with gap of 2 or more
  8. Verify answer - substitute small $n$ to check

Last Updated: October 27, 2025