Introduction
When we apply one function after another, we create a composite function. Composition is a powerful way to build complex functions from simpler ones.
Composition of Functions
Definition
If $f: A \to B$ and $g: B \to C$, then the composition of $g$ with $f$, denoted $g \circ f$, is:
$$\boxed{(g \circ f)(x) = g(f(x))}$$Read as: “$g$ of $f$ of $x$” or “$g$ composed with $f$”
Domain of Composition
$$\text{Dom}(g \circ f) = \{x \in A : f(x) \in \text{Dom}(g)\}$$Visualization
f g
A ────► B ────► C
g ∘ f
A ─────────────► C
Example 1
Let $f(x) = 2x + 1$ and $g(x) = x^2$.
$$(g \circ f)(x) = g(f(x)) = g(2x + 1) = (2x + 1)^2 = 4x^2 + 4x + 1$$ $$(f \circ g)(x) = f(g(x)) = f(x^2) = 2x^2 + 1$$In general, $g \circ f \neq f \circ g$
Composition is NOT commutative!
Properties of Composition
1. Associativity
For $f: A \to B$, $g: B \to C$, $h: C \to D$:
$$\boxed{(h \circ g) \circ f = h \circ (g \circ f)}$$Both equal $h(g(f(x)))$.
2. Identity Function
The identity function $I(x) = x$ acts as identity for composition:
$$f \circ I = I \circ f = f$$3. Non-Commutativity
Generally: $f \circ g \neq g \circ f$
4. Injectivity and Surjectivity
| If | Then |
|---|---|
| $f$ and $g$ are one-one | $g \circ f$ is one-one |
| $f$ and $g$ are onto | $g \circ f$ is onto |
| $f$ and $g$ are bijective | $g \circ f$ is bijective |
Converse results:
| If | Then |
|---|---|
| $g \circ f$ is one-one | $f$ is one-one |
| $g \circ f$ is onto | $g$ is onto |
Interactive Demo: Visualize Function Composition
Explore how composing functions affects their graphs.
Inverse Functions
Definition
For a bijective function $f: A \to B$, the inverse function $f^{-1}: B \to A$ satisfies:
$$\boxed{f^{-1}(y) = x \iff f(x) = y}$$Key Properties
- $f^{-1} \circ f = I_A$ (identity on $A$)
- $f \circ f^{-1} = I_B$ (identity on $B$)
- $(f^{-1})^{-1} = f$
- $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ (reverses order!)
Finding the Inverse
Step 1: Write $y = f(x)$
Step 2: Solve for $x$ in terms of $y$
Step 3: Replace $y$ with $x$ to get $f^{-1}(x)$
Example 2
Find the inverse of $f(x) = 2x + 3$.
Solution:
- Let $y = 2x + 3$
- Solve for $x$: $x = \frac{y - 3}{2}$
- Replace $y$ with $x$: $f^{-1}(x) = \frac{x - 3}{2}$
Verification: $(f \circ f^{-1})(x) = f\left(\frac{x-3}{2}\right) = 2 \cdot \frac{x-3}{2} + 3 = x - 3 + 3 = x$ (verified)
Example 3
Find the inverse of $f(x) = \frac{2x + 1}{x - 3}$, $x \neq 3$.
Solution:
- Let $y = \frac{2x + 1}{x - 3}$
- Cross multiply: $y(x - 3) = 2x + 1$
- Expand: $xy - 3y = 2x + 1$
- Collect $x$ terms: $xy - 2x = 3y + 1$
- Factor: $x(y - 2) = 3y + 1$
- Solve: $x = \frac{3y + 1}{y - 2}$
Graph of Inverse Function
The graph of $f^{-1}$ is the reflection of the graph of $f$ about the line $y = x$.
If $(a, b)$ is on the graph of $f$, then $(b, a)$ is on the graph of $f^{-1}$.
Self-Inverse Functions
A function $f$ is self-inverse (or an involution) if:
$$f^{-1} = f \quad \text{or} \quad f(f(x)) = x$$Examples of self-inverse functions:
- $f(x) = \frac{1}{x}$
- $f(x) = -x$
- $f(x) = \frac{a - x}{1 + ax}$ (for $ax \neq -1$)
Composition Examples
Example 4: Multiple Compositions
If $f(x) = x^2$ and $g(x) = x + 1$, find:
a) $(g \circ f)(3)$ b) $(f \circ g)(3)$ c) $(g \circ g)(3)$ d) $(f \circ f)(2)$
Solutions:
a) $(g \circ f)(3) = g(f(3)) = g(9) = 9 + 1 = 10$
b) $(f \circ g)(3) = f(g(3)) = f(4) = 16$
c) $(g \circ g)(3) = g(g(3)) = g(4) = 5$
d) $(f \circ f)(2) = f(f(2)) = f(4) = 16$
Example 5: Finding Component Functions
If $(g \circ f)(x) = \sin^2(x)$, find possible $f$ and $g$.
Solution:
One possibility:
- $f(x) = \sin(x)$
- $g(x) = x^2$
Then $(g \circ f)(x) = g(\sin(x)) = \sin^2(x)$ (correct)
Another possibility:
- $f(x) = \sin^2(x)$
- $g(x) = x$
There are infinitely many solutions!
JEE Important Results
If $f \circ g = I$ and $g \circ f = I$
Then $f$ and $g$ are inverses of each other.
If $f: \mathbb{R} \to \mathbb{R}$ is bijective
Then $f^{-1}$ exists and:
- $(f^{-1})'(y) = \frac{1}{f'(x)}$ where $y = f(x)$
Periodic Compositions
If $f$ has period $T$, then $g \circ f$ also has period $T$.
Summary
| Concept | Formula/Property |
|---|---|
| Composition | $(g \circ f)(x) = g(f(x))$ |
| Not commutative | $g \circ f \neq f \circ g$ in general |
| Associative | $(h \circ g) \circ f = h \circ (g \circ f)$ |
| Inverse exists | Only for bijective functions |
| Inverse property | $f^{-1}(f(x)) = x = f(f^{-1}(x))$ |
| Composition inverse | $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ |
Practice Problems
If $f(x) = \frac{x}{x+1}$ and $g(x) = \frac{1}{1-x}$, find $(g \circ f)(x)$ and its domain.
If $f(x) = x^3 + 3x - 1$ and $g = f^{-1}$, find $g(3)$. (Hint: If $f(a) = 3$, then $g(3) = a$)
Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(f(x)) = x$ for all $x$.
If $(f \circ f)(x) = 4x - 3$ and $f(0) = 1$, find $f(x)$.
What’s Next?
You’ve completed the Sets, Relations and Functions chapter! Key connections:
- Limits and Continuity - Uses function concepts extensively
- Permutations and Combinations - Counting functions