Three-dimensional geometry extends 2D concepts to space, dealing with points, lines, and planes.
Overview
graph TD
A[3D Geometry] --> B[Coordinates]
A --> C[Lines]
A --> D[Planes]
B --> B1[Distance]
B --> B2[Section Formula]
C --> C1[Equations]
C --> C2[Shortest Distance]Coordinate System
Point in 3D: (x, y, z)
Distance Formula
$$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$$Section Formula
Point dividing line in ratio m:n:
$$\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}, \frac{mz_2 + nz_1}{m+n}\right)$$Direction Cosines and Ratios
Direction Cosines: $l = \cos\alpha$, $m = \cos\beta$, $n = \cos\gamma$
Property: $l^2 + m^2 + n^2 = 1$
Direction Ratios: Any set (a, b, c) proportional to (l, m, n)
Conversion:
$$l = \frac{a}{\sqrt{a^2+b^2+c^2}}$$Angle Between Lines
$$\cos\theta = l_1l_2 + m_1m_2 + n_1n_2$$ $$\cos\theta = \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}$$Straight Line in 3D
Equation Forms
Symmetric Form:
$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$Parametric Form:
$$x = x_1 + at, y = y_1 + bt, z = z_1 + ct$$Vector Form:
$$\vec{r} = \vec{a} + \lambda\vec{b}$$Coplanar Lines
Lines $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ and $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$
are coplanar if:
$$\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$Skew Lines
Non-parallel, non-intersecting lines.
Shortest Distance:
$$d = \frac{|(\vec{a_2}-\vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|}$$Plane
General Equation
$$ax + by + cz + d = 0$$Normal vector: $(a, b, c)$
Other Forms
Normal Form: $lx + my + nz = p$
Intercept Form: $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
Point-Normal Form: $a(x-x_1) + b(y-y_1) + c(z-z_1) = 0$
Distance from Point to Plane
$$d = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2+b^2+c^2}}$$Angle Between Planes
$$\cos\theta = \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}$$Angle Between Line and Plane
$$\sin\theta = \frac{al + bm + cn}{\sqrt{a^2+b^2+c^2}\sqrt{l^2+m^2+n^2}}$$Practice Problems
Find the distance between points (1, 2, 3) and (4, 5, 6).
Find the equation of plane through (1, 1, 1) perpendicular to line with DR (2, 3, 4).
Find shortest distance between lines: $\frac{x-1}{2} = \frac{y+1}{3} = z$ and $\frac{x+1}{5} = \frac{y-2}{1} = z-2$
Further Reading
- Vector Algebra - Vector operations
- Coordinate Geometry - 2D geometry