Trigonometry connects angles and ratios. Mastery of identities is essential for JEE success.
Overview
graph TD
A[Trigonometry] --> B[Basic Ratios]
A --> C[Identities]
A --> D[Equations]
A --> E[Inverse Functions]
C --> C1[Pythagorean]
C --> C2[Sum/Difference]
C --> C3[Multiple Angles]Basic Trigonometric Ratios
In a right triangle:
$$\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}}, \quad \cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}, \quad \tan\theta = \frac{\text{opposite}}{\text{adjacent}}$$Reciprocal Ratios
$$\csc\theta = \frac{1}{\sin\theta}, \quad \sec\theta = \frac{1}{\cos\theta}, \quad \cot\theta = \frac{1}{\tan\theta}$$Standard Values
| Angle | 0° | 30° | 45° | 60° | 90° |
|---|---|---|---|---|---|
| sin | 0 | 1/2 | 1/√2 | √3/2 | 1 |
| cos | 1 | √3/2 | 1/√2 | 1/2 | 0 |
| tan | 0 | 1/√3 | 1 | √3 | ∞ |
Fundamental Identities
Pythagorean Identities
$$\boxed{\sin^2\theta + \cos^2\theta = 1}$$ $$\boxed{1 + \tan^2\theta = \sec^2\theta}$$ $$\boxed{1 + \cot^2\theta = \csc^2\theta}$$Quotient Identities
$$\tan\theta = \frac{\sin\theta}{\cos\theta}, \quad \cot\theta = \frac{\cos\theta}{\sin\theta}$$Sum and Difference Formulas
$$\boxed{\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B}$$ $$\boxed{\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B}$$ $$\boxed{\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}}$$Double Angle Formulas
$$\boxed{\sin 2A = 2\sin A \cos A}$$ $$\boxed{\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A}$$ $$\boxed{\tan 2A = \frac{2\tan A}{1 - \tan^2 A}}$$Half Angle Formulas
$$\sin^2\frac{A}{2} = \frac{1 - \cos A}{2}$$ $$\cos^2\frac{A}{2} = \frac{1 + \cos A}{2}$$ $$\tan\frac{A}{2} = \frac{1 - \cos A}{\sin A} = \frac{\sin A}{1 + \cos A}$$Triple Angle Formulas
$$\sin 3A = 3\sin A - 4\sin^3 A$$ $$\cos 3A = 4\cos^3 A - 3\cos A$$ $$\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$$Product-to-Sum Formulas
$$2\sin A \cos B = \sin(A+B) + \sin(A-B)$$ $$2\cos A \sin B = \sin(A+B) - \sin(A-B)$$ $$2\cos A \cos B = \cos(A+B) + \cos(A-B)$$ $$2\sin A \sin B = \cos(A-B) - \cos(A+B)$$Sum-to-Product Formulas
$$\sin C + \sin D = 2\sin\frac{C+D}{2}\cos\frac{C-D}{2}$$ $$\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$ $$\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$ $$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$General Solutions
sin θ = sin α
$$\theta = n\pi + (-1)^n\alpha$$cos θ = cos α
$$\theta = 2n\pi \pm \alpha$$tan θ = tan α
$$\theta = n\pi + \alpha$$Inverse Trigonometric Functions
Principal Values
| Function | Domain | Range |
|---|---|---|
| sin⁻¹x | [-1, 1] | [-π/2, π/2] |
| cos⁻¹x | [-1, 1] | [0, π] |
| tan⁻¹x | ℝ | (-π/2, π/2) |
| cot⁻¹x | ℝ | (0, π) |
| sec⁻¹x | (-∞,-1]∪[1,∞) | [0,π]-{π/2} |
| csc⁻¹x | (-∞,-1]∪[1,∞) | [-π/2,π/2]-{0} |
Important Properties
$$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$$ $$\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$$ $$\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$$ $$\sin^{-1}(-x) = -\sin^{-1}x$$ $$\cos^{-1}(-x) = \pi - \cos^{-1}x$$ $$\tan^{-1}(-x) = -\tan^{-1}x$$Addition Formulas
$$\tan^{-1}x + \tan^{-1}y = \begin{cases} \tan^{-1}\frac{x+y}{1-xy} & xy < 1 \\ \pi + \tan^{-1}\frac{x+y}{1-xy} & xy > 1, x,y > 0 \\ -\pi + \tan^{-1}\frac{x+y}{1-xy} & xy > 1, x,y < 0 \end{cases}$$Conversion Formulas
$$\sin^{-1}x = \tan^{-1}\frac{x}{\sqrt{1-x^2}}$$ $$\cos^{-1}x = \tan^{-1}\frac{\sqrt{1-x^2}}{x}$$Practice Problems
Prove: $\tan 20° \tan 40° \tan 60° \tan 80° = 3$
Solve: $\sin x + \cos x = \sqrt{2}$
Find: $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3)$
Simplify: $\cos^{-1}(\frac{4}{5}) + \tan^{-1}(\frac{3}{5})$