Vector Algebra

Master vectors, dot product, cross product, and vector applications for JEE Mathematics.

Vectors represent quantities with both magnitude and direction. They are fundamental in physics and mathematics.

Overview

graph TD
    A[Vectors] --> B[Basic Operations]
    A --> C[Products]
    A --> D[Applications]
    C --> C1[Dot Product]
    C --> C2[Cross Product]

Vector Basics

Representation

$$\vec{a} = a_x\hat{i} + a_y\hat{j} + a_z\hat{k}$$

Magnitude

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

Unit Vector

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|}$$

Position Vector

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

Vector Operations

Addition

$$\vec{a} + \vec{b} = (a_x+b_x)\hat{i} + (a_y+b_y)\hat{j} + (a_z+b_z)\hat{k}$$

Triangle Law: Head-to-tail addition

Parallelogram Law: Diagonal of parallelogram

Scalar Multiplication

$$k\vec{a} = ka_x\hat{i} + ka_y\hat{j} + ka_z\hat{k}$$

Dot Product (Scalar Product)

$$\boxed{\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta = a_xb_x + a_yb_y + a_zb_z}$$

Properties

  1. Commutative: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
  2. Distributive: $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
  3. $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
  4. Perpendicular: $\vec{a} \cdot \vec{b} = 0$

Angle Between Vectors

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

Projection

Projection of $\vec{a}$ on $\vec{b}$:

$$\text{Scalar} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$$ $$\text{Vector} = \frac{(\vec{a} \cdot \vec{b})}{|\vec{b}|^2}\vec{b}$$

Cross Product (Vector Product)

$$\boxed{\vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin\theta \, \hat{n}}$$ $$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Properties

  1. Anti-commutative: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
  2. Distributive: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
  3. $\vec{a} \times \vec{a} = \vec{0}$
  4. Parallel: $\vec{a} \times \vec{b} = \vec{0}$

Magnitude

$$|\vec{a} \times \vec{b}| = \text{Area of parallelogram}$$
JEE Tip
$\hat{i} \times \hat{j} = \hat{k}$ (cyclic). For anti-clockwise rotation, result is positive.

Scalar Triple Product

$$[\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$
  • Equals volume of parallelepiped
  • Zero if vectors are coplanar

Vector Triple Product

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

Memory: “BAC - CAB” rule

Applications

Collinear Vectors

$\vec{a}$ and $\vec{b}$ are collinear if $\vec{a} = \lambda\vec{b}$

Coplanar Vectors

Three vectors are coplanar if $[\vec{a}, \vec{b}, \vec{c}] = 0$

Area of Triangle

$$\text{Area} = \frac{1}{2}|\vec{a} \times \vec{b}|$$

Practice Problems

  1. Find the angle between vectors $2\hat{i} + \hat{j}$ and $\hat{i} + 2\hat{j}$.

  2. Find a unit vector perpendicular to both $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$.

  3. Find the volume of parallelepiped with edges $\hat{i}+\hat{j}$, $\hat{j}+\hat{k}$, $\hat{k}+\hat{i}$.

Quick Check
When is the scalar triple product zero?

Further Reading