Vectors represent quantities with both magnitude and direction. They are fundamental in physics and mathematics.
Overview
graph TD
A[Vectors] --> B[Basic Operations]
A --> C[Products]
A --> D[Applications]
C --> C1[Dot Product]
C --> C2[Cross Product]Vector Basics
Representation
$$\vec{a} = a_x\hat{i} + a_y\hat{j} + a_z\hat{k}$$Magnitude
$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$Unit Vector
$$\hat{a} = \frac{\vec{a}}{|\vec{a}|}$$Position Vector
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$Vector Operations
Addition
$$\vec{a} + \vec{b} = (a_x+b_x)\hat{i} + (a_y+b_y)\hat{j} + (a_z+b_z)\hat{k}$$Triangle Law: Head-to-tail addition
Parallelogram Law: Diagonal of parallelogram
Scalar Multiplication
$$k\vec{a} = ka_x\hat{i} + ka_y\hat{j} + ka_z\hat{k}$$Dot Product (Scalar Product)
$$\boxed{\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta = a_xb_x + a_yb_y + a_zb_z}$$Properties
- Commutative: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- Distributive: $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
- $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
- Perpendicular: $\vec{a} \cdot \vec{b} = 0$
Angle Between Vectors
$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$Projection
Projection of $\vec{a}$ on $\vec{b}$:
$$\text{Scalar} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$$ $$\text{Vector} = \frac{(\vec{a} \cdot \vec{b})}{|\vec{b}|^2}\vec{b}$$Cross Product (Vector Product)
$$\boxed{\vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin\theta \, \hat{n}}$$ $$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$Properties
- Anti-commutative: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- Distributive: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- $\vec{a} \times \vec{a} = \vec{0}$
- Parallel: $\vec{a} \times \vec{b} = \vec{0}$
Magnitude
$$|\vec{a} \times \vec{b}| = \text{Area of parallelogram}$$Scalar Triple Product
$$[\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$- Equals volume of parallelepiped
- Zero if vectors are coplanar
Vector Triple Product
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$Memory: “BAC - CAB” rule
Applications
Collinear Vectors
$\vec{a}$ and $\vec{b}$ are collinear if $\vec{a} = \lambda\vec{b}$
Coplanar Vectors
Three vectors are coplanar if $[\vec{a}, \vec{b}, \vec{c}] = 0$
Area of Triangle
$$\text{Area} = \frac{1}{2}|\vec{a} \times \vec{b}|$$Practice Problems
Find the angle between vectors $2\hat{i} + \hat{j}$ and $\hat{i} + 2\hat{j}$.
Find a unit vector perpendicular to both $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$.
Find the volume of parallelepiped with edges $\hat{i}+\hat{j}$, $\hat{j}+\hat{k}$, $\hat{k}+\hat{i}$.
Further Reading
- 3D Geometry - Lines and planes
- Coordinate Geometry - 2D applications