Scalar Product (Dot Product): Work, Projection & Angles

Master dot product with physics examples - learn scalar product properties, work done calculations, and projection formulas for JEE

The Hook: Thor’s Hammer and Work Done

Connect: Real Life → Scalar Product

In Avengers: Age of Ultron, when Thor tries to pull his hammer Mjolnir up but it doesn’t move, he’s applying force vertically upward.

Question: Is Thor doing any work?

Answer: NO! Because work = Force × Displacement × cos(angle)

If displacement is zero (hammer doesn’t move), work = 0.

But if displacement is perpendicular to force (like pushing a wall while walking sideways), work is also zero because cos(90°) = 0!

This “multiplication considering angle” is the scalar product - the dot product.

JEE Weightage: Scalar product appears in 3-4 questions in JEE Main, 4-5 in JEE Advanced. Essential for work-energy, projections!


The Core Concept

What is Scalar Product?

Definition

The scalar product (or dot product) of two vectors $\vec{a}$ and $\vec{b}$ is defined as:

$$\boxed{\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta}$$

where θ is the angle between the two vectors.

Result: A scalar (just a number, no direction!)

In simple terms: Dot product measures “how much” one vector goes in the direction of another.

Interactive Demo: Vector Operations Visualizer

Explore vector operations interactively. Switch to “A . B” tab to see dot product, projection, and perpendicularity in action.

Why “Dot” Product?

Written with a dot: $\vec{a} \cdot \vec{b}$ (read as “a dot b”)

Alternative Notation

$$\vec{a} \cdot \vec{b} = ab\cos\theta$$

where $a = |\vec{a}|$ and $b = |\vec{b}|$


Component Form (Most Useful for JEE!)

Component Formula

If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then:

$$\boxed{\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3}$$

Memory Trick: “Multiply Corresponding Components, then Add” → MCCA

For 2D vectors:

$$\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2$$
Quick Example

Find $\vec{a} \cdot \vec{b}$ where $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$.

Solution:

$$\vec{a} \cdot \vec{b} = (2)(1) + (3)(-2) + (1)(3)$$ $$= 2 - 6 + 3 = -1$$

Answer: -1 (a scalar!)


Properties of Scalar Product

1. Commutative Law

$$\boxed{\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}}$$

Meaning: Order doesn’t matter.

2. Distributive Law

$$\boxed{\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}}$$

Meaning: Can distribute dot product over addition.

3. Scalar Multiplication

$$\boxed{(m\vec{a}) \cdot \vec{b} = m(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (m\vec{b})}$$

where m is a scalar.

4. Not Associative

$$(\vec{a} \cdot \vec{b}) \cdot \vec{c} \text{ is meaningless!}$$

Why? $\vec{a} \cdot \vec{b}$ gives a scalar, and you can’t dot a scalar with a vector!

5. Dot Product with Itself

$$\boxed{\vec{a} \cdot \vec{a} = |\vec{a}|^2 = a^2}$$

Super useful! This gives magnitude squared.


Dot Product of Unit Vectors

Must Memorize!

Dot product of same unit vectors:

$$\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$$

Dot product of different unit vectors:

$$\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$$

Memory Trick: “Same = 1, Different = 0” (because perpendicular unit vectors!)

Why? Angle between same vectors = 0°, cos(0°) = 1 Angle between perpendicular vectors = 90°, cos(90°) = 0


Finding Angle Between Vectors

Most Important Application!

From $\vec{a} \cdot \vec{b} = ab\cos\theta$:

$$\boxed{\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}}$$

This appears in 50% of JEE dot product problems!

Steps:

  1. Calculate $\vec{a} \cdot \vec{b}$ using component form
  2. Find $|\vec{a}|$ and $|\vec{b}|$
  3. Use $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{ab}$
  4. Find θ = $\cos^{-1}(...)$
Example: Angle Between Vectors

Find angle between $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$.

Solution:

  • $\vec{a} \cdot \vec{b} = (1)(1) + (1)(1) + (1)(0) = 2$
  • $|\vec{a}| = \sqrt{1+1+1} = \sqrt{3}$
  • $|\vec{b}| = \sqrt{1+1} = \sqrt{2}$
  • $\cos\theta = \frac{2}{\sqrt{3} \cdot \sqrt{2}} = \frac{2}{\sqrt{6}} = \frac{\sqrt{6}}{3}$
  • $\theta = \cos^{-1}\left(\frac{\sqrt{6}}{3}\right) \approx 35.26°$

Perpendicular and Parallel Vectors

Perpendicular Vectors (Orthogonal)

$$\boxed{\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0}$$

Why? θ = 90° → cos(90°) = 0

JEE Shortcut

To check if vectors perpendicular: Just calculate dot product!

  • If $\vec{a} \cdot \vec{b} = 0$ → Perpendicular ✓
  • If $\vec{a} \cdot \vec{b} \neq 0$ → Not perpendicular ✗

No need to find angle! Saves 30 seconds.

Parallel Vectors (Collinear)

$$\boxed{\vec{a} \parallel \vec{b} \iff \vec{a} \cdot \vec{b} = \pm ab}$$

Why? θ = 0° or 180° → cos θ = ±1

  • Same direction (0°): $\vec{a} \cdot \vec{b} = ab$ (positive)
  • Opposite direction (180°): $\vec{a} \cdot \vec{b} = -ab$ (negative)
Example: Perpendicularity Condition

For what value of k are vectors $\vec{a} = k\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ perpendicular?

Solution: For perpendicular vectors: $\vec{a} \cdot \vec{b} = 0$

$$k(2) + (2)(-1) + (1)(3) = 0$$ $$2k - 2 + 3 = 0$$ $$2k + 1 = 0$$ $$k = -\frac{1}{2}$$

Projection of Vectors

Projection Formula

Projection of $\vec{a}$ on $\vec{b}$:

$$\boxed{\text{proj}_{\vec{b}}\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = |\vec{a}|\cos\theta}$$

Vector projection:

$$\boxed{\text{proj}_{\vec{b}}\vec{a} \cdot \hat{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\vec{b}}$$

Memory Trick: “Dot divided by bottom” → $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

Scalar projection = just the number (can be positive/negative) Vector projection = projection in direction of $\vec{b}$

Example: Projection

Find projection of $\vec{a} = 2\hat{i} + 3\hat{j}$ on $\vec{b} = \hat{i} + \hat{j}$.

Solution:

$$\text{proj}_{\vec{b}}\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$$ $$= \frac{(2)(1) + (3)(1)}{\sqrt{1+1}} = \frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{2}$$

Work Done (Physics Application)

Most Important Physics Application

Work done by force $\vec{F}$ causing displacement $\vec{s}$:

$$\boxed{W = \vec{F} \cdot \vec{s} = Fs\cos\theta}$$

where θ is angle between force and displacement.

See: Work Energy Theorem

Special Cases:

  • θ = 0° (force along displacement): W = Fs (maximum work)
  • θ = 90° (force perpendicular): W = 0 (no work!)
  • θ = 180° (force opposite): W = -Fs (negative work)
Example: Work Calculation

Force $\vec{F} = 3\hat{i} + 4\hat{j}$ N causes displacement $\vec{s} = 2\hat{i} - \hat{j}$ m. Find work done.

Solution:

$$W = \vec{F} \cdot \vec{s} = (3)(2) + (4)(-1) = 6 - 4 = 2 \text{ J}$$

Answer: 2 Joules


Memory Tricks & Patterns

Mnemonic for Dot Product

Memory Trick:Dot gives Decimal” → Result is a scalar (number)

Memory Trick for Components:Multiply Corresponding Components Add” → MCCA

Pattern Recognition

JEE Pattern #1: Zero Dot Product

If problem says “perpendicular” or “orthogonal”:

  • Immediately write: $\vec{a} \cdot \vec{b} = 0$
  • Solve for unknown

Appears in: 60% of vector perpendicularity problems

JEE Pattern #2: Unit Vector Dots

See $\hat{i}, \hat{j}, \hat{k}$ in calculation?

  • Same vectors: 1
  • Different vectors: 0

Quick expansion:

$$(\hat{i}+2\hat{j}) \cdot (3\hat{i}-\hat{j}) = 3(1) + (-2)(1) = 1$$

No need to write full components!

JEE Pattern #3: Magnitude from Dot Product

Need magnitude? Use self dot product:

$$|\vec{a}|^2 = \vec{a} \cdot \vec{a}$$

Example: $\vec{a} = 3\hat{i} + 4\hat{j}$

$$|\vec{a}|^2 = \vec{a} \cdot \vec{a} = 9 + 16 = 25 \Rightarrow |\vec{a}| = 5$$

When to Use Dot Product

Decision Tree

Use scalar product when:

  • Finding angle between vectors
  • Checking if vectors are perpendicular
  • Finding projection of one vector on another
  • Calculating work done (physics)
  • Finding component of vector along another direction

Don’t use when:

  • Need result to be a vector → Use cross product
  • Finding area, torque → Use cross product

Common Mistakes to Avoid

Trap #1: Dot Product Order in Division

Wrong: $\cos\theta = \frac{|\vec{a}||\vec{b}|}{\vec{a} \cdot \vec{b}}$ (inverted!)

Right: $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$ (dot product in numerator)

Trap #2: Forgetting Dot Product is Scalar

Wrong: $(\vec{a} \cdot \vec{b}) + \vec{c}$ (can’t add scalar to vector!)

Right: Can only add scalar to scalar, vector to vector

Trap #3: Projection vs Component

Question: “Find component of $\vec{a}$ along $\vec{b}$”

Wrong: Using $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$

Right: Using $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ (divide by denominator’s magnitude!)

Component of A along B → divide by |B|

Trap #4: Sign in Work Done

Scenario: Force opposes displacement

Wrong: Work = Fs (always positive)

Right: Check angle!

  • 0° ≤ θ < 90°: Positive work
  • θ = 90°: Zero work
  • 90° < θ ≤ 180°: Negative work

Use: $W = Fs\cos\theta$ to get correct sign!

Trap #5: Unit Vector Dot Products

Wrong: $\hat{i} \cdot \hat{j} = 1$ (assuming all are 1)

Right:

  • Same unit vectors: 1
  • Different unit vectors: 0 (perpendicular!)

Remember: Standard unit vectors are mutually perpendicular!


Practice Problems

Level 1: Foundation (NCERT Style)

Problem 1: Basic Dot Product

Find $\vec{a} \cdot \vec{b}$ where $\vec{a} = 3\hat{i} + 2\hat{j}$ and $\vec{b} = \hat{i} + 4\hat{j}$.

Solution:

$$\vec{a} \cdot \vec{b} = (3)(1) + (2)(4) = 3 + 8 = 11$$
Problem 2: Magnitude Using Dot Product

Find $|\vec{a}|$ where $\vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ using dot product.

Solution:

$$|\vec{a}|^2 = \vec{a} \cdot \vec{a} = (2)^2 + (-3)^2 + (6)^2 = 4 + 9 + 36 = 49$$ $$|\vec{a}| = 7$$
Problem 3: Unit Vector Dot Products

Calculate $(\hat{i} + \hat{j}) \cdot (2\hat{i} - 3\hat{j} + \hat{k})$.

Solution:

$$= (1)(2) + (1)(-3) + (0)(1) = 2 - 3 + 0 = -1$$

Level 2: JEE Main Type

Problem 4: Angle Between Vectors

Find angle between $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$.

Solution:

  • $\vec{a} \cdot \vec{b} = (2)(1) + (3)(2) + (1)(-1) = 2 + 6 - 1 = 7$
  • $|\vec{a}| = \sqrt{4+9+1} = \sqrt{14}$
  • $|\vec{b}| = \sqrt{1+4+1} = \sqrt{6}$
  • $\cos\theta = \frac{7}{\sqrt{14} \cdot \sqrt{6}} = \frac{7}{\sqrt{84}} = \frac{7}{2\sqrt{21}}$
  • $\theta = \cos^{-1}\left(\frac{7}{2\sqrt{21}}\right)$
Problem 5: Perpendicularity Condition

Find λ such that $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular.

Solution: For perpendicular: $\vec{a} \cdot \vec{b} = 0$

$$2(1) + \lambda(-2) + 1(3) = 0$$ $$2 - 2\lambda + 3 = 0$$ $$5 = 2\lambda$$ $$\lambda = \frac{5}{2}$$
Problem 6: Work Done

Force $\vec{F} = 2\hat{i} + 3\hat{j} - \hat{k}$ N displaces object by $\vec{s} = 3\hat{i} - 2\hat{j} + \hat{k}$ m. Find work done.

Solution:

$$W = \vec{F} \cdot \vec{s} = (2)(3) + (3)(-2) + (-1)(1)$$ $$= 6 - 6 - 1 = -1 \text{ J}$$

Negative work means force opposes displacement!

Problem 7: Projection

Find projection of $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$ on $\vec{b} = \hat{i} + \hat{j} + \hat{k}$.

Solution:

$$\text{proj}_{\vec{b}}\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$$ $$= \frac{(2)(1) + (3)(1) + (1)(1)}{\sqrt{1+1+1}} = \frac{6}{\sqrt{3}} = 2\sqrt{3}$$

Level 3: JEE Advanced Type

Problem 8: Angle Bisector

If $|\vec{a}| = |\vec{b}| = 1$ and angle between them is 60°, find $|\vec{a} + \vec{b}|$.

Solution:

$$|\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b})$$ $$= \vec{a} \cdot \vec{a} + 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}$$ $$= |\vec{a}|^2 + 2|\vec{a}||\vec{b}|\cos 60° + |\vec{b}|^2$$ $$= 1 + 2(1)(1)\left(\frac{1}{2}\right) + 1 = 1 + 1 + 1 = 3$$ $$|\vec{a} + \vec{b}| = \sqrt{3}$$
Problem 9: Vector Equation

If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$, find vector $\vec{c}$ perpendicular to both and $\vec{c} \cdot (\hat{i} + \hat{j} + \hat{k}) = 6$.

Solution: Let $\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$

Perpendicular to $\vec{a}$: $x + 2y + 3z = 0$ … (1) Perpendicular to $\vec{b}$: $2x - y + z = 0$ … (2) Given condition: $x + y + z = 6$ … (3)

From (1): $x = -2y - 3z$ Substitute in (2): $2(-2y-3z) - y + z = 0$

$$-4y - 6z - y + z = 0$$ $$-5y - 5z = 0 \Rightarrow y = -z$$

Substitute in (3): $x - z + z = 6 \Rightarrow x = 6$ From (1): $6 + 2y + 3z = 0$

Using $y = -z$: $6 - 2z + 3z = 0 \Rightarrow z = -6$, $y = 6$

Answer: $\vec{c} = 6\hat{i} + 6\hat{j} - 6\hat{k}$

Problem 10: Angle Between Diagonals

Find angle between diagonals of parallelogram with adjacent sides $\vec{a} = 3\hat{i} + 4\hat{j}$ and $\vec{b} = \hat{i} + 2\hat{j}$.

Solution: Diagonals: $\vec{d_1} = \vec{a} + \vec{b} = 4\hat{i} + 6\hat{j}$ $\vec{d_2} = \vec{a} - \vec{b} = 2\hat{i} + 2\hat{j}$

$$\vec{d_1} \cdot \vec{d_2} = (4)(2) + (6)(2) = 8 + 12 = 20$$ $$|\vec{d_1}| = \sqrt{16+36} = \sqrt{52} = 2\sqrt{13}$$ $$|\vec{d_2}| = \sqrt{4+4} = 2\sqrt{2}$$ $$\cos\theta = \frac{20}{2\sqrt{13} \cdot 2\sqrt{2}} = \frac{20}{4\sqrt{26}} = \frac{5}{\sqrt{26}}$$ $$\theta = \cos^{-1}\left(\frac{5}{\sqrt{26}}\right)$$

Connection to Physics

Dot Product is Everywhere in Physics!

Critical Applications:

  1. Work Done: $W = \vec{F} \cdot \vec{s}$

  2. Power: $P = \vec{F} \cdot \vec{v}$

  3. Magnetic Force: $W = 0$ because $\vec{F}_B \perp \vec{v}$ (dot product = 0)

  4. Electric Potential: $V = -\int \vec{E} \cdot d\vec{l}$

  5. Projection in Mechanics: Component of velocity along incline

Master dot product → Understand work-energy problems instantly!


Quick Revision Box

ConceptFormula
Definition$\vec{a} \cdot \vec{b} = ab\cos\theta$
Component form$\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$
Angle between vectors$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{
Perpendicular condition$\vec{a} \cdot \vec{b} = 0$
Parallel condition$\vec{a} \cdot \vec{b} = \pm ab$
Magnitude$
Projection of a on b$\frac{\vec{a} \cdot \vec{b}}{
Work done$W = \vec{F} \cdot \vec{s}$
Unit vectorsSame = 1, Different = 0

What’s Next?

Now learn the other type of vector multiplication:

Next Topics

Vector Product (Cross Product) - For area, torque, perpendicular vectors

Triple Products - Scalar triple product (volume), vector triple product

Also explore:


Teacher’s Summary

Key Takeaways
  1. Dot product gives a scalar - just a number, no direction
  2. Component formula is fastest - multiply corresponding components, add
  3. Perpendicular ⟺ dot product = 0 - instant perpendicularity check
  4. Angle formula is high-yield - appears in 50% of problems
  5. Work = F·s - most important physics application

“In JEE, see ‘angle between vectors’? Think dot product. See ‘perpendicular’? Set dot product = 0. See ‘work done’? Use F·s. Master these three, score full marks!”

Time-saving tip: For perpendicularity, don’t find angle - just check if dot product is zero!


Pro Tip: When problem gives magnitudes and angle, use $ab\cos\theta$. When given components, use $a_1b_1 + a_2b_2 + a_3b_3$. Choose based on what’s given - saves 1 minute!