Triple Products: Scalar Triple Product (Volume) & Vector Triple Product

Master triple products - learn scalar triple product for volume calculations and vector triple product identities crucial for JEE Advanced

The Hook: Building a Room - Volume from Vectors

Connect: Real Life → Triple Products

Imagine you’re designing a room in a video game like Minecraft or Fortnite. You’re given three edges:

  • Edge 1: 3 blocks East
  • Edge 2: 4 blocks North
  • Edge 3: 5 blocks Up

Question: What’s the volume of this room?

You could multiply 3 × 4 × 5 = 60 cubic blocks if edges are perpendicular. But what if the room is slanted (a parallelepiped)?

Answer: Use Scalar Triple Product - it gives volume for ANY three edges!

$$\text{Volume} = |\vec{a} \cdot (\vec{b} \times \vec{c})|$$

This combines both dot and cross products - the ultimate vector operation!

JEE Weightage: Triple products appear in 2-3 questions in JEE Main, 3-4 in JEE Advanced. High-difficulty, high-reward topic!


The Core Concept

What are Triple Products?

Two Types of Triple Products

When you combine three vectors, you get:

  1. Scalar Triple Product: $\vec{a} \cdot (\vec{b} \times \vec{c})$ → gives a scalar (volume)
  2. Vector Triple Product: $\vec{a} \times (\vec{b} \times \vec{c})$ → gives a vector

Key Difference:

  • Scalar triple = dot of (cross) → scalar
  • Vector triple = cross of (cross) → vector

Part 1: Scalar Triple Product

Definition

Scalar Triple Product
$$\boxed{\vec{a} \cdot (\vec{b} \times \vec{c})}$$

Also written as: $[\vec{a} \, \vec{b} \, \vec{c}]$ or $(\vec{a}, \vec{b}, \vec{c})$

Result: A scalar (number)

Geometric Meaning: Volume of parallelepiped with edges $\vec{a}, \vec{b}, \vec{c}$

Interactive Demo: Triple Product Visualization

Visualize how three vectors form a parallelepiped and compute volume.

Formula Using Determinant

Most Important Formula!

If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$:

$$\boxed{[\vec{a} \, \vec{b} \, \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}}$$

This is the fastest method for JEE!

Memory Trick: “Row-wise write components” → First vector in first row, etc.

Quick Example

Find $[\vec{a} \, \vec{b} \, \vec{c}]$ where $\vec{a} = \hat{i}+\hat{j}+\hat{k}$, $\vec{b} = 2\hat{i}+3\hat{j}+\hat{k}$, $\vec{c} = \hat{i}+\hat{k}$.

Solution:

$$[\vec{a} \, \vec{b} \, \vec{c}] = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 0 & 1 \end{vmatrix}$$

Expanding along first row:

$$= 1(3-0) - 1(2-1) + 1(0-3)$$ $$= 3 - 1 - 3 = -1$$

Geometric Interpretation: Volume

Volume of Parallelepiped
$$\boxed{\text{Volume} = |[\vec{a} \, \vec{b} \, \vec{c}]|}$$

Take absolute value because volume is positive!

Parallelepiped: 3D figure with 6 parallelogram faces (like a slanted box)

Volume of Tetrahedron:

$$\boxed{\text{Volume} = \frac{1}{6}|[\vec{a} \, \vec{b} \, \vec{c}]|}$$

Tetrahedron is 1/6 of parallelepiped (like pyramid vs rectangular prism).

Example: Volume Calculation

Find volume of parallelepiped with edges $\vec{a} = 2\hat{i}+3\hat{j}$, $\vec{b} = \hat{i}+\hat{j}+\hat{k}$, $\vec{c} = 3\hat{i}+\hat{j}+2\hat{k}$.

Solution:

$$V = \left|\begin{vmatrix} 2 & 3 & 0 \\ 1 & 1 & 1 \\ 3 & 1 & 2 \end{vmatrix}\right|$$

Expanding:

$$= |2(2-1) - 3(2-3) + 0|$$ $$= |2(1) - 3(-1)|$$ $$= |2 + 3| = 5 \text{ cubic units}$$

Properties of Scalar Triple Product

1. Cyclic Property

Cyclic Permutation Unchanged
$$\boxed{[\vec{a} \, \vec{b} \, \vec{c}] = [\vec{b} \, \vec{c} \, \vec{a}] = [\vec{c} \, \vec{a} \, \vec{b}]}$$

Cyclic rotation doesn’t change value!

Memory Trick:Cycle Keeps Value” → CKV

Why? Volume of room doesn’t depend on which edge you call “first”!

2. Anti-Cyclic Property

$$\boxed{[\vec{a} \, \vec{b} \, \vec{c}] = -[\vec{b} \, \vec{a} \, \vec{c}]}$$

Swapping any two vectors changes sign (like determinants).

3. Dot and Cross are Interchangeable

$$\boxed{\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}}$$

Amazing property: Can move the cross product around!

4. Zero Scalar Triple Product

$$\boxed{[\vec{a} \, \vec{b} \, \vec{c}] = 0 \iff \text{vectors are coplanar}}$$

Coplanar = all three vectors lie in same plane.

Why? If coplanar, they can’t form a 3D box → volume = 0!

JEE Shortcut: Coplanarity Test

To check if three vectors are coplanar: Calculate scalar triple product. If = 0, they’re coplanar!

Appears in: 40% of coplanarity problems

5. Scalar Multiplication

$$[\lambda\vec{a} \, \vec{b} \, \vec{c}] = \lambda[\vec{a} \, \vec{b} \, \vec{c}]$$

Can take scalar out (like determinants).


Coplanarity of Four Points

Four Points Coplanar Condition

Points A, B, C, D are coplanar if:

$$\boxed{[\overrightarrow{AB} \, \overrightarrow{AC} \, \overrightarrow{AD}] = 0}$$

Use: Position vectors to form edge vectors, then check scalar triple product!

Example: Coplanarity Check

Check if points A(1,2,3), B(2,3,1), C(3,1,2), D(0,4,6) are coplanar.

Solution:

$$\overrightarrow{AB} = \hat{i} + \hat{j} - 2\hat{k}$$ $$\overrightarrow{AC} = 2\hat{i} - \hat{j} - \hat{k}$$ $$\overrightarrow{AD} = -\hat{i} + 2\hat{j} + 3\hat{k}$$ $$[\overrightarrow{AB} \, \overrightarrow{AC} \, \overrightarrow{AD}] = \begin{vmatrix} 1 & 1 & -2 \\ 2 & -1 & -1 \\ -1 & 2 & 3 \end{vmatrix}$$ $$= 1(-3+2) - 1(6-1) + (-2)(4-1)$$ $$= -1 - 5 - 6 = -12 \neq 0$$

Not coplanar! (volume would be 12 cubic units)


Part 2: Vector Triple Product

Definition

Vector Triple Product
$$\boxed{\vec{a} \times (\vec{b} \times \vec{c})}$$

Result: A vector (not a scalar!)

Warning: $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$ → NOT associative!

BAC-CAB Rule (Most Important!)

BAC-CAB Identity
$$\boxed{\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})}$$

Memory Trick:BAC minus CAB

  • B comes first, multiply by A·C
  • C comes second, multiply by A·B

This is THE most important vector identity for JEE Advanced!

In words: The result is a linear combination of $\vec{b}$ and $\vec{c}$ (the two vectors being crossed).

Why “BAC-CAB”?

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

Reading the vectors: B-A·C minus C-A·BBAC-CAB

Example: Vector Triple Product

Simplify $\hat{i} \times (\hat{j} \times \hat{k})$ using BAC-CAB rule.

Solution:

$$\hat{i} \times (\hat{j} \times \hat{k}) = \hat{j}(\hat{i} \cdot \hat{k}) - \hat{k}(\hat{i} \cdot \hat{j})$$ $$= \hat{j}(0) - \hat{k}(0) = \vec{0}$$

Alternatively: $\hat{j} \times \hat{k} = \hat{i}$, so $\hat{i} \times \hat{i} = \vec{0}$ ✓

Other Form of Vector Triple Product

$$\boxed{(\vec{a} \times \vec{b}) \times \vec{c} = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{a}(\vec{b} \cdot \vec{c})}$$

Different from $\vec{a} \times (\vec{b} \times \vec{c})$!

Memory trick: The result is a combination of the first two vectors ($\vec{a}$ and $\vec{b}$).


Properties of Vector Triple Product

1. NOT Associative

$$\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$$

Parentheses matter! Always use BAC-CAB for the correct form.

2. Result is Coplanar

Important Geometric Property
$$\vec{a} \times (\vec{b} \times \vec{c})$$

is coplanar with $\vec{b}$ and $\vec{c}$.

Why? It’s a linear combination of $\vec{b}$ and $\vec{c}$!

3. Perpendicular to First Vector

$$\vec{a} \times (\vec{b} \times \vec{c})$$

is perpendicular to $\vec{a}$.

Why? It’s a cross product with $\vec{a}$!


Important Identities

Lagrange’s Identity

$$\boxed{(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})}$$

High-level identity - appears in JEE Advanced only.

Jacobi Identity

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$$

Cyclic sum equals zero - rarely asked but elegant!


Memory Tricks & Patterns

Mnemonic for Scalar Triple Product

Memory Trick:Scalar Triple = Volume” → STV

Memory Trick for Zero:Coplanar → Zero” → If all vectors in same plane, volume = 0

Pattern Recognition

JEE Pattern #1: Coplanarity Questions

If problem asks “Are vectors/points coplanar?”

  • Form scalar triple product
  • If = 0, coplanar ✓
  • If ≠ 0, not coplanar ✗

Appears in: 60% of coplanarity problems

JEE Pattern #2: BAC-CAB Simplification

See $\vec{a} \times (\vec{b} \times \vec{c})$ in problem?

  • Immediately apply BAC-CAB: $(\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$
  • Calculate dot products
  • Simplify

Don’t try to calculate cross products directly! BAC-CAB is always faster.

JEE Pattern #3: Volume Questions

Keywords indicating scalar triple product:

  • “Volume of parallelepiped”
  • “Volume of tetrahedron” (use 1/6 factor)
  • “Are points coplanar?”

Direct application - write determinant, evaluate!


When to Use Triple Products

Decision Tree

Use Scalar Triple Product when:

  • Finding volume of parallelepiped/tetrahedron
  • Checking if vectors/points are coplanar
  • Need to evaluate $\vec{a} \cdot (\vec{b} \times \vec{c})$

Use Vector Triple Product when:

  • Simplifying $\vec{a} \times (\vec{b} \times \vec{c})$
  • Need vector coplanar with two given vectors
  • Solving vector equations with nested cross products

Use BAC-CAB rule always for vector triple product!


Common Mistakes to Avoid

Trap #1: Forgetting Absolute Value for Volume

Wrong: Volume = $[\vec{a} \, \vec{b} \, \vec{c}]$ (could be negative!)

Right: Volume = $|[\vec{a} \, \vec{b} \, \vec{c}]|$ (absolute value!)

Scalar triple product can be negative, but volume is always positive!

Trap #2: BAC-CAB Sign Error

Wrong: $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) + \vec{c}(\vec{a} \cdot \vec{b})$ (plus!)

Right: $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$ (minus!)

It’s BAC minus CAB!

Trap #3: Associativity Assumption

Wrong: $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$

Right: These are DIFFERENT vectors! Parentheses matter.

Always expand using BAC-CAB for the correct form!

Trap #4: Determinant Row Order

Wrong: Writing vectors in determinant randomly

Right: First vector → first row, second → second row, third → third row

Order matters! Swapping rows changes sign.

Trap #5: Tetrahedron Volume Factor

Wrong: Volume of tetrahedron = $|[\vec{a} \, \vec{b} \, \vec{c}]|$

Right: Volume of tetrahedron = $\frac{1}{6}|[\vec{a} \, \vec{b} \, \vec{c}]|$

Don’t forget the 1/6 factor!


Practice Problems

Level 1: Foundation (NCERT Style)

Problem 1: Basic Scalar Triple Product

Find $[\vec{a} \, \vec{b} \, \vec{c}]$ where $\vec{a} = \hat{i}$, $\vec{b} = \hat{j}$, $\vec{c} = \hat{k}$.

Solution:

$$[\vec{a} \, \vec{b} \, \vec{c}] = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1$$

(This is volume of unit cube!)

Problem 2: Cyclic Property

If $[\vec{a} \, \vec{b} \, \vec{c}] = 5$, find $[\vec{b} \, \vec{c} \, \vec{a}]$.

Solution: By cyclic property: $[\vec{b} \, \vec{c} \, \vec{a}] = [\vec{a} \, \vec{b} \, \vec{c}] = 5$

Problem 3: Simple BAC-CAB

Simplify $\hat{i} \times (\hat{i} \times \hat{j})$.

Solution: Using BAC-CAB:

$$\hat{i} \times (\hat{i} \times \hat{j}) = \hat{i}(\hat{i} \cdot \hat{j}) - \hat{j}(\hat{i} \cdot \hat{i})$$ $$= \hat{i}(0) - \hat{j}(1) = -\hat{j}$$

Verify: $\hat{i} \times \hat{j} = \hat{k}$, so $\hat{i} \times \hat{k} = -\hat{j}$ ✓

Level 2: JEE Main Type

Problem 4: Volume of Parallelepiped

Find volume of parallelepiped with edges:

  • $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$
  • $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$
  • $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$

Solution:

$$V = \left|\begin{vmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{vmatrix}\right|$$

Expanding along first row:

$$= |2(4-3) - 3(2-9) + 4(1-6)|$$ $$= |2(1) - 3(-7) + 4(-5)|$$ $$= |2 + 21 - 20| = |3| = 3 \text{ cubic units}$$
Problem 5: Coplanarity of Vectors

Check if $\vec{a} = \hat{i}+2\hat{j}+3\hat{k}$, $\vec{b} = 2\hat{i}+3\hat{j}+4\hat{k}$, $\vec{c} = 3\hat{i}+4\hat{j}+5\hat{k}$ are coplanar.

Solution:

$$[\vec{a} \, \vec{b} \, \vec{c}] = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix}$$

Notice: Each row is previous row + $(\hat{i}+\hat{j}+\hat{k})$ This means vectors are in arithmetic progression → coplanar!

Expanding: $= 1(15-16) - 2(10-12) + 3(8-9)$

$$= -1 + 4 - 3 = 0$$

Coplanar!

Problem 6: Volume of Tetrahedron

Find volume of tetrahedron with vertices at O(0,0,0), A(1,2,3), B(2,1,3), C(3,2,1).

Solution:

$$\overrightarrow{OA} = \hat{i}+2\hat{j}+3\hat{k}$$ $$\overrightarrow{OB} = 2\hat{i}+\hat{j}+3\hat{k}$$ $$\overrightarrow{OC} = 3\hat{i}+2\hat{j}+\hat{k}$$ $$[\overrightarrow{OA} \, \overrightarrow{OB} \, \overrightarrow{OC}] = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{vmatrix}$$ $$= 1(1-6) - 2(2-9) + 3(4-3)$$ $$= -5 + 14 + 3 = 12$$

Volume = $\frac{1}{6}|12| = 2$ cubic units

Problem 7: BAC-CAB Application

If $\vec{a} = \hat{i}+\hat{j}$, $\vec{b} = \hat{j}+\hat{k}$, $\vec{c} = \hat{k}+\hat{i}$, find $\vec{a} \times (\vec{b} \times \vec{c})$.

Solution: Using BAC-CAB:

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$$ $$\vec{a} \cdot \vec{c} = (1)(1) + (1)(0) + (0)(1) = 1$$ $$\vec{a} \cdot \vec{b} = (1)(0) + (1)(1) + (0)(1) = 1$$ $$= \vec{b}(1) - \vec{c}(1) = (\hat{j}+\hat{k}) - (\hat{k}+\hat{i})$$ $$= -\hat{i} + \hat{j}$$

Level 3: JEE Advanced Type

Problem 8: Coplanarity of Four Points

Show that A(1,1,1), B(2,3,5), C(4,0,-1), D(0,5,3) are coplanar.

Solution:

$$\overrightarrow{AB} = \hat{i}+2\hat{j}+4\hat{k}$$ $$\overrightarrow{AC} = 3\hat{i}-\hat{j}-2\hat{k}$$ $$\overrightarrow{AD} = -\hat{i}+4\hat{j}+2\hat{k}$$ $$[\overrightarrow{AB} \, \overrightarrow{AC} \, \overrightarrow{AD}] = \begin{vmatrix} 1 & 2 & 4 \\ 3 & -1 & -2 \\ -1 & 4 & 2 \end{vmatrix}$$ $$= 1(-2+8) - 2(6-2) + 4(12-1)$$ $$= 6 - 8 + 44 = 42 \neq 0$$

Not coplanar!

(There must be calculation error in problem statement, or points given are incorrect)

Problem 9: Vector Triple Product Equation

If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors satisfying $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find $\vec{a} \times (\vec{b} \times \vec{c})$.

Solution: From $\vec{a} + \vec{b} + \vec{c} = \vec{0}$:

$$\vec{b} + \vec{c} = -\vec{a}$$

Using BAC-CAB:

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$$

From $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, taking dot with $\vec{a}$:

$$\vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0$$ $$1 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0$$

Similarly, $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = -\frac{1}{2}$

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(-\frac{1}{2}) - \vec{c}(-\frac{1}{2})$$ $$= -\frac{1}{2}\vec{b} + \frac{1}{2}\vec{c} = \frac{1}{2}(\vec{c} - \vec{b})$$
Problem 10: Reciprocal System

If $\vec{a} = \hat{i}+\hat{j}$, $\vec{b} = \hat{j}+\hat{k}$, $\vec{c} = \hat{k}+\hat{i}$, find $\vec{a}'$ such that $\vec{a}' \cdot \vec{a} = 1$, $\vec{a}' \cdot \vec{b} = 0$, $\vec{a}' \cdot \vec{c} = 0$.

Solution: $\vec{a}'$ is perpendicular to both $\vec{b}$ and $\vec{c}$, so:

$$\vec{a}' = \lambda(\vec{b} \times \vec{c})$$ $$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \hat{i}(1-0) - \hat{j}(0-1) + \hat{k}(0-1)$$ $$= \hat{i} + \hat{j} - \hat{k}$$

From $\vec{a}' \cdot \vec{a} = 1$:

$$\lambda(\hat{i}+\hat{j}-\hat{k}) \cdot (\hat{i}+\hat{j}) = 1$$ $$\lambda(1+1) = 1 \Rightarrow \lambda = \frac{1}{2}$$ $$\vec{a}' = \frac{1}{2}(\hat{i}+\hat{j}-\hat{k})$$

This is called reciprocal vector system!


Connection to Physics & 3D Geometry

Triple Products Across Subjects

Applications:

  1. Volume Calculations: Parallelepiped, tetrahedron

  2. Coplanarity Tests: Points/vectors in same plane

  3. Torque in Physics: Sometimes involves vector triple products

  4. Electromagnetic Theory: Advanced E&M uses vector identities

  5. Equation of Plane: Normal vector using cross product

Master triple products → Excel in 3D geometry & advanced physics!


Quick Revision Box

ConceptFormula
Scalar triple product$[\vec{a} \, \vec{b} \, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$
Determinant form$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$
Volume of parallelepiped$\|[\vec{a} \, \vec{b} \, \vec{c}]\|$
Volume of tetrahedron$\frac{1}{6}\|[\vec{a} \, \vec{b} \, \vec{c}]\|$
Coplanar condition$[\vec{a} \, \vec{b} \, \vec{c}] = 0$
Cyclic property$[\vec{a} \, \vec{b} \, \vec{c}] = [\vec{b} \, \vec{c} \, \vec{a}] = [\vec{c} \, \vec{a} \, \vec{b}]$
Vector triple product$\vec{a} \times (\vec{b} \times \vec{c})$
BAC-CAB rule$\vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$

What’s Next?

You’ve completed the Vector Algebra chapter! Apply these concepts:

Related Topics

Mathematics:

Physics:

Practice:

  • Solve previous year JEE questions on vectors
  • Focus on volume and coplanarity problems

Teacher’s Summary

Key Takeaways
  1. Scalar triple product = Volume - Use determinant form for speed
  2. Coplanar ⟺ scalar triple product = 0 - Instant coplanarity test
  3. BAC-CAB rule is mandatory - Don’t calculate vector triple product directly
  4. Absolute value for volume - Scalar triple product can be negative
  5. Cyclic property saves time - $[\vec{a} \, \vec{b} \, \vec{c}] = [\vec{b} \, \vec{c} \, \vec{a}]$
  6. Tetrahedron = (1/6) parallelepiped - Don’t forget factor!

“In JEE, see ‘volume’? Calculate scalar triple product determinant. See ‘coplanar’? Check if scalar triple = 0. See vector triple? Apply BAC-CAB immediately. Master these three rules, ace all triple product questions!”

Time-saving tip: For coplanarity, just check if determinant = 0. No need to calculate full value!


Pro Tip: BAC-CAB appears in JEE Advanced every 2-3 years. When you see $\vec{a} \times (\vec{b} \times \vec{c})$, your reflex should be: “Write $\vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$”. Practice until it’s automatic!


Congratulations! You’ve mastered all of Vector Algebra - from basics to triple products. Vectors are now your superpower for mechanics and 3D geometry!