The Hook: Iron Man’s Flight Path
When Tony Stark (Iron Man) flies from Stark Tower to the Avengers compound, saying “I flew 500 km” isn’t enough information. JARVIS needs:
- Distance: 500 km (how far)
- Direction: Northeast bearing 45°
“500 km” alone is a scalar. “500 km Northeast” is a vector.
The Question: Why does physics (and JEE) care so much about direction?
JEE Weightage: Vector Basics appears in 2-3 questions in JEE Main, 3-4 in JEE Advanced. Foundation topic for mechanics!
The Core Concept
What is a Vector?
A vector is a quantity that has both:
- Magnitude (size/length)
- Direction (orientation in space)
A scalar has only magnitude, no direction.
In simple terms: If you can answer “which way?” about it, it’s a vector. If you can’t, it’s a scalar.
Scalars vs Vectors
| Type | Examples | JEE Appearance |
|---|---|---|
| Scalars | Distance, Speed, Mass, Temperature, Energy | Work, Power, Kinetic Energy |
| Vectors | Displacement, Velocity, Force, Acceleration | All mechanics problems |
Vector Notation
$$\boxed{\vec{a} \text{ or } \mathbf{a} \text{ or } \overrightarrow{AB}}$$- $\vec{a}$ - General vector notation
- $|\vec{a}|$ or $a$ - Magnitude of vector
- $\hat{a}$ - Unit vector (magnitude = 1)
- $\overrightarrow{AB}$ - Vector from point A to B
Types of Vectors
1. Zero Vector (Null Vector)
$$\boxed{\vec{0} = 0\hat{i} + 0\hat{j} + 0\hat{k}}$$Properties:
- Magnitude = 0
- Direction is undefined (no specific direction)
- Adding zero vector to any vector leaves it unchanged: $\vec{a} + \vec{0} = \vec{a}$
JEE Trap: Zero vector is the only vector whose direction cannot be determined!
2. Unit Vector
$$\boxed{\hat{a} = \frac{\vec{a}}{|\vec{a}|}}$$Definition: A vector with magnitude 1 in the direction of $\vec{a}$.
Standard Unit Vectors:
- $\hat{i}$ - along positive x-axis
- $\hat{j}$ - along positive y-axis
- $\hat{k}$ - along positive z-axis
Properties: $|\hat{i}| = |\hat{j}| = |\hat{k}| = 1$
If $\vec{a} = 3\hat{i} + 4\hat{j}$, find the unit vector.
Solution:
- Magnitude: $|\vec{a}| = \sqrt{3^2 + 4^2} = \sqrt{9+16} = 5$
- Unit vector: $\hat{a} = \frac{3\hat{i} + 4\hat{j}}{5} = \frac{3}{5}\hat{i} + \frac{4}{5}\hat{j}$
3. Equal Vectors
$$\boxed{\vec{a} = \vec{b} \iff |\vec{a}| = |\vec{b}| \text{ and same direction}}$$Important: Vectors can be equal even if they start at different points - only magnitude and direction matter!
4. Negative Vector
$$\boxed{-\vec{a} \text{ has same magnitude but opposite direction to } \vec{a}}$$Example: If $\vec{a} = 3\hat{i} + 4\hat{j}$, then $-\vec{a} = -3\hat{i} - 4\hat{j}$
5. Parallel Vectors (Collinear)
$$\boxed{\vec{a} \parallel \vec{b} \iff \vec{a} = \lambda\vec{b} \text{ for some scalar } \lambda}$$Cases:
- If $\lambda > 0$: Same direction
- If $\lambda < 0$: Opposite direction
6. Position Vector
The position vector of a point P(x, y, z) with respect to origin O is:
$$\boxed{\overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}}$$Simply: It’s the vector from origin to the point.
Position Vectors: The Foundation
Position Vector of a Point
For point P(x, y, z):
$$\vec{r} = \overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}$$Magnitude: $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$ (distance from origin)
Vector Joining Two Points
Vector from point A$(x_1, y_1, z_1)$ to B$(x_2, y_2, z_2)$:
$$\boxed{\overrightarrow{AB} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}}$$Memory Trick: “Tail to Head” → Subtract tail coordinates from head coordinates
Length of AB:
$$|\overrightarrow{AB}| = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$$This is just the distance formula!
Interactive Demo: Visualize Vector Addition
Explore how vectors add geometrically using the interactive visualization below.
A(1, 2, 3) and B(4, 6, 9). Find $\overrightarrow{AB}$ and its magnitude.
Solution:
$$\overrightarrow{AB} = (4-1)\hat{i} + (6-2)\hat{j} + (9-3)\hat{k} = 3\hat{i} + 4\hat{j} + 6\hat{k}$$ $$|\overrightarrow{AB}| = \sqrt{3^2 + 4^2 + 6^2} = \sqrt{9+16+36} = \sqrt{61}$$Component Form of Vectors
2D Vector
$$\vec{a} = a_x\hat{i} + a_y\hat{j}$$Magnitude: $|\vec{a}| = \sqrt{a_x^2 + a_y^2}$
Direction: $\tan\theta = \frac{a_y}{a_x}$ (angle with x-axis)
3D Vector
$$\vec{a} = a_x\hat{i} + a_y\hat{j} + a_z\hat{k}$$Magnitude: $|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$
Direction Cosines:
$$\boxed{l = \frac{a_x}{|\vec{a}|}, \quad m = \frac{a_y}{|\vec{a}|}, \quad n = \frac{a_z}{|\vec{a}|}}$$Important Property: $l^2 + m^2 + n^2 = 1$
Memory Tricks & Patterns
Mnemonic for Types of Vectors
Memory Trick: “Zero Unit Equal Negative Parallel Position” → ZUENPP
- Zero vector - magnitude 0
- Unit vector - magnitude 1
- Equal vectors - same magnitude & direction
- Negative vector - opposite direction
- Parallel vectors - $\vec{a} = \lambda\vec{b}$
- Position vector - from origin
Pattern Recognition
Vector $3\hat{i} + 4\hat{j}$ appears frequently because:
- Magnitude = 5 (Pythagorean triplet)
- Easy to work with in calculations
- Unit vector is $\frac{3}{5}\hat{i} + \frac{4}{5}\hat{j}$
Other common triplets: (5, 12, 13), (8, 15, 17), (7, 24, 25)
Vectors at 30°, 45°, 60° with x-axis appear often:
- 45°: Components are equal, $\vec{a} = a\hat{i} + a\hat{j}$
- 30°: $\vec{a} = a\sqrt{3}\hat{i} + a\hat{j}$ (magnitude 2a)
- 60°: $\vec{a} = a\hat{i} + a\sqrt{3}\hat{j}$ (magnitude 2a)
When to Use Position Vectors
Use position vectors when:
- Problem gives coordinates of points
- Need to find distance between points
- Working with centroids, midpoints
- Proving collinearity of points
Use general vectors when:
- Forces, velocities given as magnitudes
- Direction is given as angles
- Abstract vector algebra problems
Common Mistakes to Avoid
Wrong: $\vec{a} + \vec{b} = |\vec{a}| + |\vec{b}|$
Right: Vectors add by components, not magnitudes!
If $\vec{a} = 3\hat{i}$ and $\vec{b} = 4\hat{j}$:
- $\vec{a} + \vec{b} = 3\hat{i} + 4\hat{j}$ (magnitude = 5, NOT 7!)
Common Error: Thinking $\overrightarrow{AB} = \overrightarrow{BA}$
Truth: $\overrightarrow{AB} = -\overrightarrow{BA}$ (opposite directions)
Always: Final point - Initial point
Question Type: “What is the direction of zero vector?”
Wrong Answer: “All directions” or “No direction”
Correct: Direction is undefined (not determinable)
Wrong: Unit vector of $\vec{a} = 3\hat{i} + 4\hat{j}$ is $\hat{i} + \hat{j}$
Right: First find magnitude (5), then divide: $\frac{3}{5}\hat{i} + \frac{4}{5}\hat{j}$
Practice Problems
Level 1: Foundation (NCERT Style)
Find the position vector of point P(2, -3, 5).
Solution:
$$\vec{r} = 2\hat{i} - 3\hat{j} + 5\hat{k}$$Magnitude: $|\vec{r}| = \sqrt{4 + 9 + 25} = \sqrt{38}$
Find unit vector in the direction of $\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}$.
Solution:
- $|\vec{a}| = \sqrt{4 + 4 + 1} = 3$
- $\hat{a} = \frac{2\hat{i} - 2\hat{j} + \hat{k}}{3} = \frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{1}{3}\hat{k}$
Find $\overrightarrow{AB}$ where A(1, 2, 3) and B(3, 4, 5).
Solution:
$$\overrightarrow{AB} = (3-1)\hat{i} + (4-2)\hat{j} + (5-3)\hat{k} = 2\hat{i} + 2\hat{j} + 2\hat{k}$$Length: $|\overrightarrow{AB}| = \sqrt{4+4+4} = 2\sqrt{3}$
Level 2: JEE Main Type
If $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k}$, show that they are parallel.
Solution:
$$\vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k} = 2(2\hat{i} + 3\hat{j} + 4\hat{k}) = 2\vec{a}$$Since $\vec{b} = 2\vec{a}$ (where $\lambda = 2$), vectors are parallel. ✓
Find direction cosines of $\vec{a} = 6\hat{i} - 3\hat{j} + 2\hat{k}$.
Solution:
- Magnitude: $|\vec{a}| = \sqrt{36 + 9 + 4} = 7$
- Direction cosines:
- $l = \frac{6}{7}$
- $m = \frac{-3}{7}$
- $n = \frac{2}{7}$
Verify: $l^2 + m^2 + n^2 = \frac{36 + 9 + 4}{49} = 1$ ✓
A point P has position vector $\vec{r} = 3\hat{i} - 2\hat{j} + 5\hat{k}$. Find coordinates of P and distance from origin.
Solution:
- Coordinates: P(3, -2, 5)
- Distance: $|\vec{r}| = \sqrt{9 + 4 + 25} = \sqrt{38}$
Level 3: JEE Advanced Type
If $\vec{a} = (x+3)\hat{i} + 2\hat{j} + z\hat{k}$ and $\vec{b} = \hat{i} + y\hat{j} - 2\hat{k}$ are equal vectors, find x, y, z.
Solution: For equal vectors, all components must be equal:
- $x + 3 = 1 \Rightarrow x = -2$
- $2 = y \Rightarrow y = 2$
- $z = -2$
Answer: $x = -2, y = 2, z = -2$
Points A and B have position vectors $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = 4\hat{i} + \hat{j} + 2\hat{k}$. Find position vector of midpoint M.
Solution:
$$\vec{r}_M = \frac{\vec{a} + \vec{b}}{2} = \frac{(2\hat{i}+3\hat{j}+4\hat{k}) + (4\hat{i}+\hat{j}+2\hat{k})}{2}$$ $$= \frac{6\hat{i} + 4\hat{j} + 6\hat{k}}{2} = 3\hat{i} + 2\hat{j} + 3\hat{k}$$Midpoint: M(3, 2, 3)
Find values of k such that $|\vec{a}| = 5$ where $\vec{a} = k\hat{i} + 3\hat{j} + 4\hat{k}$.
Solution:
$$|\vec{a}| = \sqrt{k^2 + 9 + 16} = 5$$ $$k^2 + 25 = 25$$ $$k^2 = 0 \Rightarrow k = 0$$Answer: k = 0
Connection to Physics
Every mechanics problem uses vectors:
Kinematics: Displacement, velocity, acceleration are ALL vectors
- See: Motion in a Plane
Forces: Newton’s laws work with vector addition
- See: Newton’s Laws
Work & Energy: Work = Force · Displacement (dot product!)
- See: Work Energy Theorem
Rotational Motion: Torque, angular momentum are cross products
- See: Rotational Dynamics
Master vectors → Excel in Physics!
Quick Revision Box
| Concept | Formula/Key Point |
|---|---|
| Vector notation | $\vec{a}$ or $\overrightarrow{AB}$ |
| Magnitude | $ |
| Unit vector | $\hat{a} = \frac{\vec{a}}{ |
| Position vector | P(x,y,z) → $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ |
| Vector AB | $\overrightarrow{AB} = (x_2-x_1)\hat{i} + (y_2-y_1)\hat{j} + (z_2-z_1)\hat{k}$ |
| Parallel vectors | $\vec{a} = \lambda\vec{b}$ |
| Direction cosines | $l = \frac{a_x}{ |
| Property | $l^2 + m^2 + n^2 = 1$ |
| Zero vector | Magnitude = 0, direction undefined |
What’s Next?
Now that you understand vector basics, learn how to add and subtract vectors:
Vector Addition & Subtraction - Triangle law, parallelogram law, component method
Also explore:
- Scalar Product (Dot Product) - For work, projection problems
- 3D Coordinate Geometry - Uses position vectors heavily
Teacher’s Summary
- Vectors have magnitude AND direction - that’s what makes them powerful
- Position vectors are the bridge between coordinate geometry and vectors
- Unit vectors are your friends - they simplify direction calculations
- The formula $\overrightarrow{AB} = B - A$ is used in 80% of vector problems
- Direction undefined vs no direction - zero vector direction is undefined!
“In JEE, if you see coordinates, think position vectors. If you see forces/velocities, think component vectors. Master both, ace mechanics!”
Time-saving tip: For 3-4-5, 5-12-13 vectors, write magnitude directly. Saves 30 seconds!
Pro Tip: When solving vector problems, always draw a diagram first. 60% of mistakes happen because students skip visualization!