Atoms and Nuclei

Master Bohr's model, atomic spectra, nuclear physics, radioactivity, and nuclear reactions for JEE Physics.

This topic covers atomic structure and nuclear physics - the physics of the very small.

Overview

graph TD
    A[Atoms & Nuclei] --> B[Atomic Models]
    A --> C[Nuclear Physics]
    B --> B1[Rutherford]
    B --> B2[Bohr]
    C --> C1[Nuclear Properties]
    C --> C2[Radioactivity]
    C --> C3[Fission & Fusion]

Rutherford’s Model

Alpha Particle Scattering

  • Most α particles pass through (atom is mostly empty)
  • Few scattered at large angles
  • Very few bounce back (small, dense nucleus)

Nuclear Size

$$R = R_0 A^{1/3}$$

where $R_0 \approx 1.2$ fm, A = mass number

Bohr’s Model

Postulates

  1. Electrons revolve in fixed circular orbits
  2. Angular momentum is quantized: $mvr = n\frac{h}{2\pi}$
  3. Energy is emitted/absorbed only during transitions

Results for Hydrogen-like Atoms

Radius of nth orbit:

$$\boxed{r_n = \frac{n^2 h^2 \varepsilon_0}{\pi m Z e^2} = 0.529 \times \frac{n^2}{Z} \text{ Å}}$$

Velocity:

$$v_n = \frac{Ze^2}{2\varepsilon_0 nh} = 2.18 \times 10^6 \times \frac{Z}{n} \text{ m/s}$$

Energy:

$$\boxed{E_n = -\frac{13.6 Z^2}{n^2} \text{ eV}}$$

Hydrogen Spectrum

graph TD
    A[Spectral Series] --> B[Lyman n→1 UV]
    A --> C[Balmer n→2 Visible]
    A --> D[Paschen n→3 IR]
    A --> E[Brackett n→4 IR]
    A --> F[Pfund n→5 IR]

Rydberg Formula:

$$\frac{1}{\lambda} = RZ^2\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

where $R = 1.097 \times 10^7$ m⁻¹

JEE Tip
For hydrogen, ground state energy = -13.6 eV. For He⁺ (Z=2), multiply by 4. For Li²⁺ (Z=3), multiply by 9.

Nuclear Composition

  • Nucleons: Protons + Neutrons
  • Atomic number (Z): Number of protons
  • Mass number (A): Protons + Neutrons
  • Isotopes: Same Z, different A
  • Isobars: Same A, different Z
  • Isotones: Same number of neutrons

Nuclear Properties

Mass Defect

$$\Delta m = [Zm_p + (A-Z)m_n] - M_{nucleus}$$

Binding Energy

$$\boxed{BE = \Delta m \times c^2 = \Delta m \times 931.5 \text{ MeV}}$$

Binding Energy per Nucleon

$$\frac{BE}{A}$$

Maximum for Fe-56 (~8.8 MeV/nucleon)

Radioactivity

Types of Decay

RadiationNatureChargeMassPenetration
αHe nucleus+24uLow
β⁻Electron-1~0Medium
β⁺Positron+1~0Medium
γEM wave00High

Decay Laws

$$\boxed{N = N_0 e^{-\lambda t}}$$ $$\boxed{A = A_0 e^{-\lambda t} = \lambda N}$$

Half-Life

$$\boxed{t_{1/2} = \frac{0.693}{\lambda} = \frac{\ln 2}{\lambda}}$$

After n half-lives: $N = \frac{N_0}{2^n}$

Mean Life

$$\tau = \frac{1}{\lambda} = \frac{t_{1/2}}{0.693}$$

Decay Equations

Alpha decay:

$$^A_Z X \rightarrow ^{A-4}_{Z-2}Y + ^4_2He$$

Beta minus decay:

$$^A_Z X \rightarrow ^A_{Z+1}Y + e^- + \bar{\nu}_e$$

Beta plus decay:

$$^A_Z X \rightarrow ^A_{Z-1}Y + e^+ + \nu_e$$
Common Mistake
In all nuclear reactions, both mass number (A) and atomic number (Z) must be conserved.

Nuclear Reactions

Q-Value

$$Q = (m_{reactants} - m_{products})c^2$$
  • Q > 0: Exothermic
  • Q < 0: Endothermic

Nuclear Fission

Heavy nucleus splits into lighter nuclei.

$$^{235}_{92}U + ^1_0n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^1_0n + \text{Energy}$$

Energy released: ~200 MeV per fission

Nuclear Fusion

Light nuclei combine to form heavier nucleus.

$$^2_1H + ^3_1H \rightarrow ^4_2He + ^1_0n + 17.6 \text{ MeV}$$

Higher energy per nucleon but requires extremely high temperature.

Practice Problems

  1. Find the wavelength of the second line in Balmer series of hydrogen.

  2. Calculate the binding energy of $^{16}_8O$ if its mass is 15.995 u. (mp = 1.007825 u, mn = 1.008665 u)

  3. The half-life of a radioactive sample is 20 days. Find the fraction remaining after 60 days.

  4. What is the Q-value of the reaction: $^2_1H + ^2_1H \rightarrow ^3_2He + ^1_0n$? (masses: D = 2.0141 u, He-3 = 3.0160 u, n = 1.0087 u)

Quick Check
Why are heavier nuclei more likely to undergo fission while lighter nuclei undergo fusion?

Further Reading