Nuclear Structure: The Heart of Matter
The Oppenheimer Trinity Test Connection 🎬
“Now I am become Death, the destroyer of worlds.” - Oppenheimer, quoting Bhagavad Gita after Trinity test
Before Oppenheimer could split the atom, scientists had to understand what’s inside! The nucleus, discovered by Rutherford, contains 99.9% of atomic mass in a space 100,000 times smaller than the atom itself.
Discovery of Nuclear Components
Timeline
1911: Rutherford discovers nucleus (positive, massive, tiny) 1919: Rutherford discovers proton
- Bombarded nitrogen with α-particles
- Observed hydrogen nuclei (protons) ejected
- ¹⁴N + α → ¹⁷O + p (first transmutation!)
1932: Chadwick discovers neutron
- Bombarded beryllium with α-particles
- Observed uncharged radiation (not γ-rays!)
- ⁹Be + α → ¹²C + n
- Nobel Prize 1935
Nuclear Notation
Standard Form
$$^A_Z X_N$$where:
- X = chemical symbol
- A = mass number (nucleons = protons + neutrons)
- Z = atomic number (protons)
- N = neutron number (N = A - Z)
Examples:
- $^{12}_6C_6$ → Carbon-12: 6 protons, 6 neutrons
- $^{14}_6C_8$ → Carbon-14: 6 protons, 8 neutrons
- $^{235}_{92}U_{143}$ → Uranium-235: 92 protons, 143 neutrons
Simplified Forms
Often written as:
- $^AX$ (when Z is obvious from element)
- C-12, U-235, etc.
Nuclear Building Blocks
Proton (p)
| Property | Value |
|---|---|
| Charge | +e = +1.6 × 10⁻¹⁹ C |
| Mass | 1.6726 × 10⁻²⁷ kg |
| Mass | 1.007276 u |
| Mass | 938.27 MeV/c² |
| Spin | 1/2 (fermion) |
| Stability | Stable (in nucleus) |
Neutron (n)
| Property | Value |
|---|---|
| Charge | 0 (neutral) |
| Mass | 1.6749 × 10⁻²⁷ kg |
| Mass | 1.008665 u |
| Mass | 939.57 MeV/c² |
| Spin | 1/2 (fermion) |
| Stability | Free: decays (τ ≈ 15 min) |
| Bound: stable in nucleus |
Electron (e⁻)
| Property | Value |
|---|---|
| Charge | -e = -1.6 × 10⁻¹⁹ C |
| Mass | 9.109 × 10⁻³¹ kg |
| Mass | 0.000549 u |
| Mass | 0.511 MeV/c² |
| Spin | 1/2 (fermion) |
Mass Relationships
$$m_n > m_p > m_e$$ $$m_n - m_p = 0.0013 \text{ u} ≈ 1.3 \text{ MeV}/c^2$$ $$m_p/m_e = 1836$$ $$m_n/m_e = 1839$$Atomic Mass Unit (u)
:::box Definition
1 u = 1/12 × mass of $^{12}C$ atom
$$1 \text{ u} = 1.66054 × 10^{-27} \text{ kg}$$Energy Equivalent:
$$1 \text{ u} = 931.5 \text{ MeV}/c^2$$This comes from Einstein’s $E = mc^2$ :::
Why 1 u ≈ 931.5 MeV/c²?
$$E = mc^2$$ $$E = 1.66054 × 10^{-27} \text{ kg} × (3 × 10^8 \text{ m/s})^2$$ $$E = 1.4924 × 10^{-10} \text{ J}$$ $$E = \frac{1.4924 × 10^{-10}}{1.6 × 10^{-19}} \text{ eV} = 9.315 × 10^8 \text{ eV}$$ $$E = 931.5 \text{ MeV}$$Isotopes, Isobars, Isotones
Isotopes
Same Z, different A (same element, different mass)
¹²C₆ and ¹⁴C₆ → Carbon isotopes
↓ ↓
6p+6n 6p+8n
Same chemistry, different nucleus!
Examples:
- Hydrogen: ¹H (protium), ²H (deuterium), ³H (tritium)
- Carbon: ¹²C (stable), ¹⁴C (radioactive, used in dating)
- Uranium: ²³⁵U (fissile), ²³⁸U (fertile)
Isobars
Same A, different Z (different elements, same mass number)
¹⁴C₆ and ¹⁴N₇ → Mass 14, but different elements
↓ ↓
6p+8n 7p+7n
Different chemistry, same total nucleons!
Examples:
- $^{14}_6C$ and $^{14}_7N$
- $^{40}_{18}Ar$, $^{40}_{19}K$, $^{40}_{20}Ca$
Isotones
Same N, different Z and A (same neutron number)
¹⁴C₆ and ¹⁵N₇ → Both have 8 neutrons
↓ ↓
6p+8n 7p+8n
Examples:
- $^{14}_6C$ and $^{15}_7N$ (both N=8)
- $^{3}_1H$ and $^{4}_2He$ (both N=2)
Isodiaphers
Same (A-2Z) (neutron excess)
Less commonly used in JEE.
Comparison Table
| Type | Same | Different | Example |
|---|---|---|---|
| Isotopes | Z | A, N | ¹²C, ¹⁴C |
| Isobars | A | Z, N | ¹⁴C, ¹⁴N |
| Isotones | N | Z, A | ¹⁴C, ¹⁵N |
| Isomers | Z, A, N | Energy state | $^{99m}Tc$ |
Nuclear Size
Empirical Formula
:::box Nuclear Radius
$$R = R_0 A^{1/3}$$where:
- R₀ = 1.2 × 10⁻¹⁵ m = 1.2 fm (fermi or femtometer)
- A = mass number :::
Implications:
- Volume ∝ A (each nucleon occupies same space)
- Density is constant for all nuclei!
- Nuclear matter is incompressible
Nuclear Density
$$ρ = \frac{M}{V} = \frac{A × 1.67 × 10^{-27}}{\frac{4}{3}π R^3}$$ $$ρ = \frac{A × 1.67 × 10^{-27}}{\frac{4}{3}π (R_0 A^{1/3})^3}$$ $$ρ = \frac{3 × 1.67 × 10^{-27}}{4π R_0^3} ≈ 2.3 × 10^{17} \text{ kg/m}^3$$This is constant for all nuclei! 🤯
Amazing fact: 1 cm³ of nuclear matter weighs 230 million tons!
Interactive Demo: Visualize Nuclear Decay Processes
Explore how unstable nuclei undergo radioactive decay through alpha, beta, and gamma emissions.
Mass Defect (Δm)
When nucleons combine to form a nucleus, the mass of the nucleus is LESS than the sum of its constituents!
:::box Mass Defect Formula
$$Δm = [Z m_p + N m_n] - M_{nucleus}$$or
$$Δm = [Z m_p + N m_n + Z m_e] - M_{atom}$$where:
- Z = number of protons
- N = number of neutrons (A - Z)
- M = actual mass :::
The “missing” mass has been converted to binding energy!
Why Mass Defect Occurs
$$E = mc^2$$When nucleons bind:
- Strong nuclear force pulls them together
- Energy is released
- Mass decreases by Δm = E/c²
Analogy: Like a ball falling into a valley:
- Loses potential energy
- Gains binding (negative potential energy)
- Total mass-energy decreases
Binding Energy (BE)
Energy required to completely disassemble a nucleus into separate protons and neutrons.
:::box Binding Energy
$$BE = Δm × c^2$$In convenient units:
$$BE(\text{MeV}) = Δm(\text{u}) × 931.5$$:::
Binding Energy Per Nucleon
$$BE/A = \frac{Total \text{ } BE}{A}$$Most important quantity in nuclear physics!
- Measures nuclear stability
- Higher BE/A → more stable
- Maximum at Fe-56 (~8.8 MeV)
Packing Fraction (f)
$$f = \frac{M - A}{A}$$where:
- M = actual atomic mass (in u)
- A = mass number
Physical meaning:
- Measures deviation from integer mass
- Related to BE/A
- Negative f → more tightly bound
Less commonly used than BE/A in modern physics.
Interactive Demo: Nuclear Calculator
const NuclearCalculator = () => {
const [Z, setZ] = useState(6);
const [A, setA] = useState(12);
const mp = 1.007276; // u (proton mass)
const mn = 1.008665; // u (neutron mass)
const me = 0.000549; // u (electron mass)
// Example atomic masses (would need database for real app)
const atomicMasses = {
'1,1': 1.007825, '1,2': 2.014102, '1,3': 3.016049,
'2,3': 3.016029, '2,4': 4.002603,
'6,12': 12.000000, '6,13': 13.003355, '6,14': 14.003241,
'7,14': 14.003074, '7,15': 15.000109,
'8,16': 15.994915, '8,17': 16.999132, '8,18': 17.999160,
'92,235': 235.043923, '92,238': 238.050788
};
const N = A - Z;
const key = `${Z},${A}`;
const Matom = atomicMasses[key] || (Z * mp + N * mn + Z * me);
const Mnucleus = Matom - Z * me;
// Mass defect
const massDefect = (Z * mp + N * mn) - Mnucleus;
// Binding energy
const BE = massDefect * 931.5; // MeV
const BEperA = BE / A;
// Packing fraction
const packingFraction = (Matom - A) / A;
// Nuclear radius
const R = 1.2 * Math.pow(A, 1/3); // fm
return (
<div>
<h3>Nuclear Structure Calculator</h3>
<label>Atomic Number (Z): {Z}</label>
<input
type="range"
min="1"
max="92"
value={Z}
onChange={(e) => setZ(Number(e.target.value))}
/>
<label>Mass Number (A): {A}</label>
<input
type="range"
min={Z}
max={Z + 150}
value={A}
onChange={(e) => setA(Number(e.target.value))}
/>
<div className="results">
<h4>Nuclear Composition:</h4>
<p>Protons: {Z}</p>
<p>Neutrons: {N}</p>
<p>Total Nucleons: {A}</p>
<h4>Masses:</h4>
<p>Expected mass (separate): {(Z*mp + N*mn).toFixed(6)} u</p>
<p>Actual nuclear mass: {Mnucleus.toFixed(6)} u</p>
<p>Mass defect: {massDefect.toFixed(6)} u</p>
<h4>Binding Energy:</h4>
<p>Total BE: {BE.toFixed(2)} MeV</p>
<p>BE per nucleon: {BEperA.toFixed(3)} MeV</p>
<h4>Size:</h4>
<p>Nuclear radius: {R.toFixed(2)} fm</p>
<p>Atomic radius: ~100,000 fm (0.1 nm)</p>
<h4>Stability:</h4>
{BEperA > 8 ? (
<p style={{color: 'green'}}>✓ Highly stable nucleus</p>
) : BEperA > 7 ? (
<p style={{color: 'orange'}}>Moderately stable</p>
) : (
<p style={{color: 'red'}}>⚠ Less stable nucleus</p>
)}
</div>
</div>
);
};
Memory Tricks 🧠
“ZIPPER” for Nuclear Notation
Z = atomic number (protons) Isotopes have same Z Protons and neutrons in nucleus Packing fraction = (M-A)/A Einstein: E = mc² Radius = R₀A^(1/3)
Isotope vs Isobar
Iso-TOPE → same TOP number (Z, at top) Iso-BAR → same MASS (A, the bar/weight)
Mass Defect Memory
Nucleons together → Lighter
Binding makes → Tighter
Missing mass → Energy
E = mc² → The key
Atomic Mass Unit
“931.5 is the magic number” 1 u = 931.5 MeV/c²
“Carbon-12 defines the scale” 1 u = (1/12) × mass of ¹²C
Common Mistakes ⚠️
❌ Mistake 1: Confusing mass defect sign
Wrong: Δm = M_nucleus - [Zm_p + Nm_n] (positive) Right: Δm = [Zm_p + Nm_n] - M_nucleus (positive)
❌ Mistake 2: Using wrong particle mass
Wrong: Using atomic mass instead of nuclear mass Right: Subtract electron mass: M_nucleus = M_atom - Zm_e
❌ Mistake 3: Forgetting c² in BE
Wrong: BE = Δm (in Joules) Right: BE = Δm × c² OR Δm(u) × 931.5 MeV
❌ Mistake 4: Nuclear radius formula
Wrong: R = R₀A or R = R₀A² Right: R = R₀A^(1/3)
❌ Mistake 5: Neutron number
Wrong: N = Z Right: N = A - Z (not always equal to Z!)
Important Numerical Values
Particle Masses
| Particle | Mass (u) | Mass (MeV/c²) |
|---|---|---|
| Proton | 1.007276 | 938.27 |
| Neutron | 1.008665 | 939.57 |
| Electron | 0.000549 | 0.511 |
| ¹H atom | 1.007825 | - |
| ⁴He atom | 4.002603 | - |
| ¹²C atom | 12.000000 | - |
Conversion Factors
| Conversion | Value |
|---|---|
| 1 u | 1.66054 × 10⁻²⁷ kg |
| 1 u | 931.5 MeV/c² |
| 1 MeV | 1.602 × 10⁻¹³ J |
| 1 fm | 10⁻¹⁵ m |
Nuclear Sizes
| Nucleus | A | R (fm) |
|---|---|---|
| ¹H | 1 | 1.2 |
| ⁴He | 4 | 1.9 |
| ¹²C | 12 | 2.7 |
| ⁵⁶Fe | 56 | 4.6 |
| ²³⁸U | 238 | 7.4 |
Derivations You Must Know
1. Nuclear Density
$$ρ = \frac{Mass}{Volume} = \frac{Am_u}{\frac{4}{3}πR^3}$$ $$ρ = \frac{A × 1.67 × 10^{-27}}{\frac{4}{3}π(R_0A^{1/3})^3}$$ $$ρ = \frac{A × 1.67 × 10^{-27}}{\frac{4}{3}π R_0^3 A}$$ $$ρ = \frac{3 × 1.67 × 10^{-27}}{4π(1.2 × 10^{-15})^3}$$ $$ρ = 2.3 × 10^{17} \text{ kg/m}^3$$Independent of A!
2. Binding Energy Calculation
For $^{4}_2He$:
$$Δm = [2m_p + 2m_n] - M_{He \text{ nucleus}}$$ $$M_{He \text{ atom}} = 4.002603 \text{ u}$$ $$M_{He \text{ nucleus}} = 4.002603 - 2(0.000549) = 4.001505 \text{ u}$$ $$Δm = [2(1.007276) + 2(1.008665)] - 4.001505$$ $$Δm = 4.031882 - 4.001505 = 0.030377 \text{ u}$$ $$BE = 0.030377 × 931.5 = 28.3 \text{ MeV}$$ $$BE/A = 28.3/4 = 7.07 \text{ MeV per nucleon}$$3. Ratio of Nuclear Radii
$$\frac{R_1}{R_2} = \frac{R_0A_1^{1/3}}{R_0A_2^{1/3}} = \left(\frac{A_1}{A_2}\right)^{1/3}$$Example: $^{27}Al$ vs $^{64}Cu$
$$\frac{R_{Al}}{R_{Cu}} = \left(\frac{27}{64}\right)^{1/3} = (0.422)^{1/3} = 0.75$$Problem-Solving Strategy
Step 1: Identify Given Information
- Element (Z is fixed)
- Mass number (A)
- Or: specific isotope notation
Step 2: Calculate Basic Quantities
- N = A - Z
- Expected mass = Zm_p + Nm_n (+ Zm_e for atom)
- Actual mass (given or looked up)
Step 3: Find Mass Defect
- Δm = Expected - Actual
- Must be positive!
Step 4: Calculate BE
- BE = Δm × 931.5 MeV
- BE/A = BE / A
Step 5: Check Units
- Mass in u, BE in MeV
- OR all in SI (kg, Joules)
Practice Problems
Level 1: JEE Main Basics
Q1. Find the number of protons, neutrons, and electrons in $^{23}_{11}Na$.
Solution:
Protons (Z) = 11
Electrons = 11 (neutral atom)
Neutrons (N) = A - Z = 23 - 11 = 12
Q2. Calculate the nuclear radius of $^{27}Al$.
Solution:
R = R₀A^(1/3)
R = 1.2 × (27)^(1/3)
R = 1.2 × 3 = 3.6 fm
Q3. The binding energy of $^{4}He$ is 28.3 MeV. Find the binding energy per nucleon.
Solution:
BE/A = 28.3 / 4 = 7.075 MeV
Level 2: JEE Main/Advanced
Q4. Calculate the mass defect and binding energy of deuterium ($^2_1H$). Given: m_p = 1.007276 u, m_n = 1.008665 u, m_d = 2.014102 u
Solution:
Deuterium: 1 proton + 1 neutron
Expected mass = 1.007276 + 1.008665 = 2.015941 u
Actual atomic mass = 2.014102 u
Actual nuclear mass = 2.014102 - 0.000549 = 2.013553 u
Δm = 2.015941 - 2.013553 = 0.002388 u
BE = 0.002388 × 931.5 = 2.224 MeV
BE/A = 2.224 / 2 = 1.112 MeV per nucleon
(This is quite low - deuterium is weakly bound!)
Q5. The radii of two nuclei are in the ratio 1:2. Find the ratio of their mass numbers.
Solution:
R₁/R₂ = 1/2
R₀A₁^(1/3) / R₀A₂^(1/3) = 1/2
(A₁/A₂)^(1/3) = 1/2
A₁/A₂ = (1/2)³ = 1/8
Mass numbers are in ratio 1:8
Q6. Find the density of nuclear matter.
Solution:
ρ = 3m_u / (4πR₀³)
ρ = 3 × 1.67 × 10⁻²⁷ / [4π × (1.2 × 10⁻¹⁵)³]
ρ = 5.01 × 10⁻²⁷ / (2.17 × 10⁻⁴⁴)
ρ = 2.3 × 10¹⁷ kg/m³
This is the same for ALL nuclei!
Level 3: JEE Advanced
Q7. Calculate the energy required to remove a neutron from $^{13}_6C$ nucleus. Given: m($^{12}C$) = 12.000000 u, m($^{13}C$) = 13.003355 u, m_n = 1.008665 u
Solution:
Separation energy = BE of removed neutron
¹³C → ¹²C + n
Energy required = [m(¹²C) + m_n - m(¹³C)] × c²
Δm = 12.000000 + 1.008665 - 13.003355
Δm = 0.005310 u
E = 0.005310 × 931.5 = 4.95 MeV
(This is the neutron separation energy)
Q8. The binding energy per nucleon of $^{16}_8O$ is 7.97 MeV. Find: (a) Total binding energy (b) Mass defect in u (c) Atomic mass of $^{16}O$
Solution:
(a) Total BE = 16 × 7.97 = 127.52 MeV
(b) Δm = BE / 931.5 = 127.52 / 931.5 = 0.1369 u
(c) Expected mass = 8m_p + 8m_n + 8m_e
= 8(1.007276) + 8(1.008665) + 8(0.000549)
= 16.131920 u
Atomic mass = Expected - Δm
= 16.131920 - 0.1369
= 15.995 u
(Actual value: 15.994915 u - good match!)
Q9. A nucleus has radius R. If its mass number becomes 8 times, what happens to: (a) Nuclear radius (b) Nuclear density (c) Total mass
Solution:
(a) R' = R₀(8A)^(1/3) = R₀A^(1/3) × 2 = 2R
Radius doubles
(b) ρ' = ρ (density remains same!)
(c) M' ≈ 8M (mass scales linearly with A)
(approximately, ignoring mass defect changes)
Q10. Show that the radius of nucleus is proportional to the cube root of its volume, assuming constant nuclear density.
Solution:
Nuclear density: ρ = M/V
For constant ρ:
M ∝ V
Also: M = Am_u (approximately)
∴ V ∝ A
Volume: V = (4/3)πR³
∴ R³ ∝ A
∴ R ∝ A^(1/3)
This is the empirical formula R = R₀A^(1/3)!
Physical meaning: Nuclear matter is incompressible,
so volume simply scales with number of nucleons.
Cross-Links to Related Topics
- Binding Energy - Detailed BE curve and stability
- Radioactivity - Unstable nuclei and decay
- Nuclear Reactions - Fission, fusion, transmutations
- Rutherford Model - Discovery of nucleus
Quick Revision Checklist ✓
- Proton: +e, 1.007276 u, 938.27 MeV/c²
- Neutron: 0, 1.008665 u, 939.57 MeV/c²
- 1 u = 931.5 MeV/c² = 1.66 × 10⁻²⁷ kg
- Notation: $^A_ZX_N$ where N = A - Z
- Isotopes: same Z, different A
- Isobars: same A, different Z
- Nuclear radius: R = 1.2A^(1/3) fm
- Nuclear density: 2.3 × 10¹⁷ kg/m³ (constant!)
- Mass defect: Δm = [Zm_p + Nm_n] - M_nucleus
- Binding energy: BE = Δm × 931.5 MeV
- BE/A measures stability
Final Tips for JEE
- Master conversions: u ↔ MeV/c² ↔ kg
- Mass defect is positive: Expected > Actual
- Nuclear vs atomic mass: Remember to subtract electrons
- BE formula: Δm(u) × 931.5 = BE(MeV)
- Radius formula: R ∝ A^(1/3), not A or A²
- Density is constant: Same for all nuclei!
- Isotope chemistry: Same Z → same chemistry
- Know famous isotopes: ²H, ³H, ¹⁴C, ²³⁵U, ²³⁸U
- Units matter: MeV for energy, fm for size
- Physical meaning: Mass “disappears” into binding
Last updated: May 2, 2025 Previous: Hydrogen Spectrum Next: Binding Energy Curve