Rotational Motion

Master moment of inertia, torque, angular momentum, and rotational dynamics for JEE Physics.

Rotational motion deals with objects rotating about an axis. It’s analogous to linear motion with different physical quantities.

Overview

graph TD
    A[Rotational Motion] --> B[Kinematics]
    A --> C[Dynamics]
    A --> D[Rolling Motion]
    C --> C1[Torque]
    C --> C2[Moment of Inertia]
    C --> C3[Angular Momentum]

Linear vs Rotational Quantities

LinearRotationalRelation
Displacement $s$Angular displacement $\theta$$s = r\theta$
Velocity $v$Angular velocity $\omega$$v = r\omega$
Acceleration $a$Angular acceleration $\alpha$$a_t = r\alpha$
Mass $m$Moment of inertia $I$-
Force $F$Torque $\tau$$\tau = r \times F$
Momentum $p$Angular momentum $L$$L = r \times p$
$F = ma$$\tau = I\alpha$-
$KE = \frac{1}{2}mv^2$$KE = \frac{1}{2}I\omega^2$-

Rotational Kinematics

For constant angular acceleration:

$$\omega = \omega_0 + \alpha t$$ $$\theta = \omega_0 t + \frac{1}{2}\alpha t^2$$ $$\omega^2 = \omega_0^2 + 2\alpha\theta$$

Centre of Mass

$$\boxed{\vec{r}_{cm} = \frac{\sum m_i\vec{r}_i}{\sum m_i}}$$

For continuous body:

$$\vec{r}_{cm} = \frac{\int \vec{r}\,dm}{\int dm}$$

Properties

  • Total external force causes acceleration of CM
  • If no external force, CM moves with constant velocity
  • Internal forces don’t affect CM motion

Moment of Inertia

$$\boxed{I = \sum m_i r_i^2 = \int r^2\,dm}$$

Standard Moments of Inertia

BodyAxisMoment of Inertia
Point massDistance r$mr^2$
Rod (length L)Through center, perpendicular$\frac{mL^2}{12}$
RodThrough end, perpendicular$\frac{mL^2}{3}$
RingThrough center, perpendicular$mR^2$
DiscThrough center, perpendicular$\frac{mR^2}{2}$
Solid sphereThrough center$\frac{2mR^2}{5}$
Hollow sphereThrough center$\frac{2mR^2}{3}$
CylinderThrough axis$\frac{mR^2}{2}$

Radius of Gyration

$$I = mk^2 \Rightarrow k = \sqrt{\frac{I}{m}}$$

Theorems

Parallel Axis Theorem:

$$\boxed{I = I_{cm} + md^2}$$

Perpendicular Axis Theorem (for planar bodies):

$$\boxed{I_z = I_x + I_y}$$
JEE Tip
For any axis parallel to an axis through CM, use parallel axis theorem. For perpendicular axes in the plane of a flat body, use perpendicular axis theorem.

Torque

$$\boxed{\vec{\tau} = \vec{r} \times \vec{F}}$$

Magnitude: $\tau = rF\sin\theta = r_\perp F = rF_\perp$

Newton’s Second Law (Rotation)

$$\boxed{\tau = I\alpha}$$

Angular Momentum

$$\boxed{\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega}}$$

Conservation of Angular Momentum

If $\tau_{ext} = 0$:

$$\boxed{L = I\omega = \text{constant}}$$

Applications:

  • Ice skater spinning
  • Diver tucking
  • Angular velocity of planets

Relation with Torque

$$\tau = \frac{dL}{dt}$$

Rotational Kinetic Energy

$$\boxed{KE_{rot} = \frac{1}{2}I\omega^2}$$

Rolling Motion

Rolling = Translation + Rotation

Pure Rolling Condition

$$\boxed{v_{cm} = R\omega}$$

(No slipping at contact point)

Kinetic Energy in Rolling

$$KE_{total} = KE_{trans} + KE_{rot} = \frac{1}{2}mv_{cm}^2 + \frac{1}{2}I\omega^2$$

For rolling: $KE = \frac{1}{2}mv^2\left(1 + \frac{k^2}{R^2}\right)$

Acceleration on Incline (Pure Rolling)

$$\boxed{a = \frac{g\sin\theta}{1 + \frac{I}{mR^2}} = \frac{g\sin\theta}{1 + \frac{k^2}{R^2}}}$$

Time to reach bottom of incline (length L):

$$t = \sqrt{\frac{2L(1 + k^2/R^2)}{g\sin\theta}}$$

Comparison of Rolling Objects

Object$I/mR^2$AccelerationSpeed at bottom
Ring/Hoop1$\frac{g\sin\theta}{2}$Slowest
Disc/Cylinder1/2$\frac{2g\sin\theta}{3}$Medium
Solid Sphere2/5$\frac{5g\sin\theta}{7}$Fastest
Common Mistake
Friction is necessary for pure rolling but does no work in pure rolling because the contact point has zero velocity.

Practice Problems

  1. Find the moment of inertia of a disc about a tangent in its plane.

  2. A uniform rod of mass 2 kg and length 1 m rotates about one end. Find angular momentum when ω = 10 rad/s.

  3. A disc and ring of same mass and radius roll down an incline. Which reaches bottom first?

  4. A spinning top has angular momentum 10 kg⋅m²/s. If moment of inertia is 0.5 kg⋅m², find angular velocity.

Quick Check
Why does an ice skater spin faster when they pull their arms in?

Further Reading