Prerequisites
Before studying this topic, review:
- Circular Motion - Centripetal force
- Conservation of Energy
Introduction
Vertical circular motion is a classic problem combining energy conservation with circular motion dynamics. The key challenge: the speed keeps changing because gravity acts differently at various points of the circle.
Types of Vertical Circular Motion
1. Object on a String (or Rod)
String/Rope: Can only pull, not push. Goes slack if tension becomes zero. Rod: Can push or pull. Motion continues even at low speeds.
2. Object on a Track
Inner track (like a roller coaster loop) — Normal force acts inward Outer track (ball in a bowl) — Normal force acts outward
Analysis at Key Points
For an object of mass $m$ on a string of length $r$:
At the Lowest Point (Bottom)
Forces: Tension $T$ upward, Weight $mg$ downward
$$T - mg = \frac{mv_{bottom}^2}{r}$$ $$\boxed{T_{bottom} = mg + \frac{mv_{bottom}^2}{r}}$$Tension is maximum here.
At the Highest Point (Top)
Forces: Tension $T$ downward, Weight $mg$ downward (both toward center)
$$T + mg = \frac{mv_{top}^2}{r}$$ $$\boxed{T_{top} = \frac{mv_{top}^2}{r} - mg}$$Tension is minimum here.
At Any Angle θ from Vertical
$$T - mg\cos\theta = \frac{mv^2}{r}$$ $$T = mg\cos\theta + \frac{mv^2}{r}$$Minimum Speed Conditions
For the string to remain taut, tension must be non-negative.
Minimum Speed at Top
Setting $T_{top} = 0$:
$$0 = \frac{mv_{top}^2}{r} - mg$$ $$\boxed{v_{top}^{min} = \sqrt{gr}}$$Minimum Speed at Bottom
Using energy conservation from bottom to top:
$$\frac{1}{2}mv_{bottom}^2 = \frac{1}{2}mv_{top}^2 + mg(2r)$$Substituting $v_{top} = \sqrt{gr}$:
$$\frac{1}{2}v_{bottom}^2 = \frac{1}{2}(gr) + 2gr = \frac{5gr}{2}$$ $$\boxed{v_{bottom}^{min} = \sqrt{5gr}}$$Interactive Demo: Visualize Vertical Circular Motion
See how speed and tension vary at different points in the vertical circle.
| Point | Minimum Speed | Condition |
|---|---|---|
| Top | $\sqrt{gr}$ | Tension just becomes zero |
| Bottom | $\sqrt{5gr}$ | Required to reach top |
Tension at Critical Speed
When launched from bottom at exactly $v = \sqrt{5gr}$:
At Bottom
$$T_{bottom} = mg + \frac{m(5gr)}{r} = mg + 5mg = \boxed{6mg}$$At Top
$$T_{top} = \frac{m(gr)}{r} - mg = mg - mg = \boxed{0}$$Tension Difference
$$T_{bottom} - T_{top} = 6mg$$This is always true regardless of the actual speed (as long as the circle is completed):
$$\boxed{T_{bottom} - T_{top} = 6mg}$$Speed at Any Point
Using energy conservation from bottom:
$$\frac{1}{2}mv_{bottom}^2 = \frac{1}{2}mv^2 + mgh$$where $h = r(1 - \cos\theta)$ (height above bottom)
$$v^2 = v_{bottom}^2 - 2gr(1 - \cos\theta)$$What Happens Below Critical Speed?
If $v_{bottom} < \sqrt{5gr}$:
Case 1: $v_{bottom} < \sqrt{2gr}$
Object oscillates back and forth (doesn’t reach horizontal level) - similar to SHM for small angles.
Case 2: $\sqrt{2gr} < v_{bottom} < \sqrt{5gr}$
Object rises past horizontal but string goes slack before reaching top. Object becomes a projectile.
The angle at which string goes slack:
$$\cos\theta = \frac{v_{bottom}^2 - 2gr}{3gr}$$Comparison: String vs Rod
| Aspect | String | Rigid Rod |
|---|---|---|
| Can push? | No | Yes |
| $v_{top}^{min}$ | $\sqrt{gr}$ | 0 |
| $v_{bottom}^{min}$ | $\sqrt{5gr}$ | $\sqrt{4gr} = 2\sqrt{gr}$ |
| Goes slack? | Yes | No |
For a rigid rod, the object can be stationary at the top (rod pushes down):
$$v_{bottom}^{min} = \sqrt{2g(2r)} = 2\sqrt{gr}$$Worked Examples
Example 1: Critical Speed
Solution:
$$v_{bottom}^{min} = \sqrt{5gr} = \sqrt{5 \times 10 \times 1} = \sqrt{50} = \boxed{5\sqrt{2} \approx 7.07 \text{ m/s}}$$Example 2: Tension Calculation
Solution:
At bottom:
$$T_{bottom} = mg + \frac{mv^2}{r} = 2(10) + \frac{2(64)}{0.5} = 20 + 256 = \boxed{276 \text{ N}}$$Speed at top (energy conservation):
$$v_{top}^2 = v_{bottom}^2 - 4gr = 64 - 4(10)(0.5) = 64 - 20 = 44$$At top:
$$T_{top} = \frac{mv_{top}^2}{r} - mg = \frac{2(44)}{0.5} - 20 = 176 - 20 = \boxed{156 \text{ N}}$$Verify: $T_{bottom} - T_{top} = 276 - 156 = 120 = 6mg$ (correct!)
Example 3: Incomplete Circle
Solution:
Check: $\sqrt{2gr} = \sqrt{40} \approx 6.32$ m/s
Since $6 < 6.32$, ball won’t reach horizontal level. Let’s find where:
At height $h$, $v^2 = 36 - 2(10)h = 36 - 20h$
String goes slack when $T = 0$:
$$mg\cos\theta = \frac{mv^2}{r}$$With $h = r(1-\cos\theta)$:
$$g\cos\theta = \frac{36 - 20(2)(1-\cos\theta)}{2}$$ $$20\cos\theta = 36 - 40 + 40\cos\theta$$ $$-20\cos\theta = -4$$ $$\cos\theta = 0.2$$ $$\theta = \boxed{78.5°}$$Practice Problems
A stone on a 0.8 m string is whirled in a vertical circle. Find the minimum speed at the highest point.
A 0.5 kg ball on a 1 m string moves with 10 m/s at the lowest point. Find tensions at bottom, top, and horizontal positions.
What minimum speed must a car have at the top of a circular bridge (radius 20 m) to maintain contact?